Wandering and escaping: Recoiling massive black holes in cosmological simulations

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Chi An Dong-Páez, Marta Volonteri, Yohan Dubois, Ricarda S. Beckmann, Maxime Trebitsch
{"title":"Wandering and escaping: Recoiling massive black holes in cosmological simulations","authors":"Chi An Dong-Páez, Marta Volonteri, Yohan Dubois, Ricarda S. Beckmann, Maxime Trebitsch","doi":"10.1051/0004-6361/202453070","DOIUrl":null,"url":null,"abstract":"After a merger of two massive black holes (MBHs), the remnant receives a gravitational wave (GW) recoil kick that can have a strong effect on its future evolution. The magnitude of the kick (<i>v<i/><sub>recoil<sub/>) depends on the mass ratio and the alignment of the spins and orbital angular momenta, and therefore on the previous evolution of the MBHs. We investigate the cosmic effect of GW recoil by running for the first time a high-resolution cosmological simulation including on-the-fly GW recoil that depends on the MBH spins (evolved through accretion and mergers), masses and dynamics which are also all evolved directly in the simulation. We also run a twin simulation without GW recoil. The simulations are zoom-in type of simulations run down to <i>z<i/> = 4.4. We find that GW recoil reduces the growth of merger remnants, and can have a significant effect on the MBH-galaxy correlations and the merger rate. We find large recoil kicks across all galaxy masses in the simulation, up to a few 10<sup>11<sup/> <i>M<i/><sub>⊙<sub/>. The effect of recoil can be significant even if the MBHs are embedded in a rotationally supported gaseous structure. We investigate the dynamics of recoiling MBHs and find that MBHs remain in the centre of the host galaxy for low <i>v<i/><sub>recoil<sub/>/<i>v<i/><sub>esc<sub/> and escape rapidly for high <i>v<i/><sub>recoil<sub/>/<i>v<i/><sub>esc<sub/>. Only if <i>v<i/><sub>recoil<sub/> is comparable to <i>v<i/><sub>esc<sub/> the MBHs escape the central region of the galaxy but might remain as wandering MBHs until the end of the simulation. Recoiling MBHs are a significant fraction of the wandering MBH population. Although the dynamics of recoiling MBHs can be complex, some retain their initial radial orbits but are difficult to discern from other wandering MBHs on radial orbits. Others scatter with the halo substructure or circularise in the asymmetric potential. Our work highlights the importance of including GW recoil in cosmological simulation models.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"61 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202453070","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

After a merger of two massive black holes (MBHs), the remnant receives a gravitational wave (GW) recoil kick that can have a strong effect on its future evolution. The magnitude of the kick (vrecoil) depends on the mass ratio and the alignment of the spins and orbital angular momenta, and therefore on the previous evolution of the MBHs. We investigate the cosmic effect of GW recoil by running for the first time a high-resolution cosmological simulation including on-the-fly GW recoil that depends on the MBH spins (evolved through accretion and mergers), masses and dynamics which are also all evolved directly in the simulation. We also run a twin simulation without GW recoil. The simulations are zoom-in type of simulations run down to z = 4.4. We find that GW recoil reduces the growth of merger remnants, and can have a significant effect on the MBH-galaxy correlations and the merger rate. We find large recoil kicks across all galaxy masses in the simulation, up to a few 1011M. The effect of recoil can be significant even if the MBHs are embedded in a rotationally supported gaseous structure. We investigate the dynamics of recoiling MBHs and find that MBHs remain in the centre of the host galaxy for low vrecoil/vesc and escape rapidly for high vrecoil/vesc. Only if vrecoil is comparable to vesc the MBHs escape the central region of the galaxy but might remain as wandering MBHs until the end of the simulation. Recoiling MBHs are a significant fraction of the wandering MBH population. Although the dynamics of recoiling MBHs can be complex, some retain their initial radial orbits but are difficult to discern from other wandering MBHs on radial orbits. Others scatter with the halo substructure or circularise in the asymmetric potential. Our work highlights the importance of including GW recoil in cosmological simulation models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信