{"title":"Klotho antiaging protein: molecular mechanisms and therapeutic potential in diseases.","authors":"Aditya Dipakrao Hajare, Neha Dagar, Anil Bhanudas Gaikwad","doi":"10.1186/s43556-025-00253-y","DOIUrl":null,"url":null,"abstract":"<p><p>Klotho, initially introduced as an anti-aging protein, is expressed in the brain, pancreas, and most prominently in the kidney. The two forms of Klotho (membrane-bound and soluble form) have diverse pharmacological functions such as anti-inflammatory, anti-oxidative, anti-fibrotic, tumour-suppressive etc. The membrane-bound form plays a pivotal role in maintaining kidney homeostasis by regulating fibroblast growth factor 23 (FGF 23) signalling, vitamin D metabolism and phosphate balance. Klotho deficiency has been linked with significantly reduced protection against various kidney pathological phenotypes, including diabetic kidney disease (DKD), which is a major cause of chronic kidney disease leading to end-stage kidney disease. Owing to the pleiotropic actions of klotho, it has shown beneficial effects in DKD by tackling the complex pathophysiology and reducing kidney inflammation, oxidative stress, as well as fibrosis. Moreover, the protective effect of klotho extends beyond DKD in other pathological conditions, including cardiovascular diseases, alzheimer's disease, cancer, inflammatory bowel disease, and liver disease. Therefore, this review summarizes the relationship between Klotho expression and various diseases with a special emphasis on DKD, the distinct mechanisms and the potential of exogenous Klotho supplementation as a therapeutic strategy. Future research into exogenous Klotho could unravel novel treatment avenues for DKD and other diseases.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":"6 1","pages":"19"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-025-00253-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Klotho, initially introduced as an anti-aging protein, is expressed in the brain, pancreas, and most prominently in the kidney. The two forms of Klotho (membrane-bound and soluble form) have diverse pharmacological functions such as anti-inflammatory, anti-oxidative, anti-fibrotic, tumour-suppressive etc. The membrane-bound form plays a pivotal role in maintaining kidney homeostasis by regulating fibroblast growth factor 23 (FGF 23) signalling, vitamin D metabolism and phosphate balance. Klotho deficiency has been linked with significantly reduced protection against various kidney pathological phenotypes, including diabetic kidney disease (DKD), which is a major cause of chronic kidney disease leading to end-stage kidney disease. Owing to the pleiotropic actions of klotho, it has shown beneficial effects in DKD by tackling the complex pathophysiology and reducing kidney inflammation, oxidative stress, as well as fibrosis. Moreover, the protective effect of klotho extends beyond DKD in other pathological conditions, including cardiovascular diseases, alzheimer's disease, cancer, inflammatory bowel disease, and liver disease. Therefore, this review summarizes the relationship between Klotho expression and various diseases with a special emphasis on DKD, the distinct mechanisms and the potential of exogenous Klotho supplementation as a therapeutic strategy. Future research into exogenous Klotho could unravel novel treatment avenues for DKD and other diseases.