Genome-wide identification and characterization of stress-responsive genes in Chlorella vulgaris.

IF 1.9 Q3 GENETICS & HEREDITY
Yasmeen Khizar, Umer Farooq, Kotb A Attia, Obaid Ur Rehman, Asmaa M Abushady, Sajid Fiaz, Umar Zeb, Rashid Iqbal, Muhammad Uzair
{"title":"Genome-wide identification and characterization of stress-responsive genes in Chlorella vulgaris.","authors":"Yasmeen Khizar, Umer Farooq, Kotb A Attia, Obaid Ur Rehman, Asmaa M Abushady, Sajid Fiaz, Umar Zeb, Rashid Iqbal, Muhammad Uzair","doi":"10.1186/s12863-025-01307-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chlorella vulgaris is a significant green alga that has a role in the bioremediation of environmental pollutants, especially heavy metals. Therefore, to meet the emerging needs of sustainable bioremediation, it is the need of the hour to improve the bioremediation potential of Chlorella vulgaris. Stress-related genes play significant roles in homeostasis and stress management in algal species, including C. vulgaris. It deals with varying pH and temperature, toxic heavy metals, oxidative stress, and many others. While certain stress-responsive proteins such as Heat Shock Proteins (HSPs) and Antioxidant Enzymes have been previously reported in C. vulgaris, this study aims to expand the scope by identifying and characterizing a diverse range of genes from various gene families, many of which have not been studied before in C. vulgaris.</p><p><strong>Method: </strong>A comprehensive analysis of the stress-related genes was conducted in which comparative phylogenetic analysis; conserved motif detection, determination of gene structure, and their subcellular localization were performed.</p><p><strong>Results: </strong>As a result of this study, 15 stress-related genes in C. vulgaris were annotated and characterized. The phylogenetic analysis represented that these genes evolved independently in C. vulgaris. Twenty highly conserved motifs amino acid structures have been exhibited. These motifs have a potential role in stress management. The proteins are localized at different locations in the cells. In parallel to genome-wide analysis, an experiment was conducted in a wet lab to evaluate the growth curve of C. vulgaris under Cd and pH stress.</p><p><strong>Conclusions: </strong>The results revealed a probability that C. vulgaris has some mechanisms and genes that act as key players for survival. Moreover, this study not only provides identification and characterization of stress-related genes but also lays the foundation for further identification, annotation, and confirmation by expression profiling under different stress conditions such as toxic heavy metals and pH.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"26 1","pages":"20"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-025-01307-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chlorella vulgaris is a significant green alga that has a role in the bioremediation of environmental pollutants, especially heavy metals. Therefore, to meet the emerging needs of sustainable bioremediation, it is the need of the hour to improve the bioremediation potential of Chlorella vulgaris. Stress-related genes play significant roles in homeostasis and stress management in algal species, including C. vulgaris. It deals with varying pH and temperature, toxic heavy metals, oxidative stress, and many others. While certain stress-responsive proteins such as Heat Shock Proteins (HSPs) and Antioxidant Enzymes have been previously reported in C. vulgaris, this study aims to expand the scope by identifying and characterizing a diverse range of genes from various gene families, many of which have not been studied before in C. vulgaris.

Method: A comprehensive analysis of the stress-related genes was conducted in which comparative phylogenetic analysis; conserved motif detection, determination of gene structure, and their subcellular localization were performed.

Results: As a result of this study, 15 stress-related genes in C. vulgaris were annotated and characterized. The phylogenetic analysis represented that these genes evolved independently in C. vulgaris. Twenty highly conserved motifs amino acid structures have been exhibited. These motifs have a potential role in stress management. The proteins are localized at different locations in the cells. In parallel to genome-wide analysis, an experiment was conducted in a wet lab to evaluate the growth curve of C. vulgaris under Cd and pH stress.

Conclusions: The results revealed a probability that C. vulgaris has some mechanisms and genes that act as key players for survival. Moreover, this study not only provides identification and characterization of stress-related genes but also lays the foundation for further identification, annotation, and confirmation by expression profiling under different stress conditions such as toxic heavy metals and pH.

普通小球藻应激反应基因的全基因组鉴定与特征分析。
背景:小球藻(Chlorella vulgaris)是一种重要的绿藻,对环境污染物特别是重金属具有生物修复作用。因此,为了满足新兴的可持续生物修复需求,提高普通小球藻的生物修复潜力是当务之急。应激相关基因在藻类的稳态和应激管理中起着重要作用。它处理不同的pH值和温度、有毒重金属、氧化应激和许多其他问题。虽然一些应激反应蛋白如热休克蛋白(Heat Shock proteins, HSPs)和抗氧化酶已经在c.o vulgaris中报道过,但本研究旨在通过鉴定和表征来自不同基因家族的多种基因来扩大范围,其中许多基因在c.o vulgaris中从未被研究过。方法:对胁迫相关基因进行综合分析,其中比较系统发育分析;保守基序检测、基因结构测定及其亚细胞定位。结果:本研究对15个逆境相关基因进行了注释和鉴定。系统发育分析表明,这两个基因是独立进化而来的。已经发现了20个高度保守的基序氨基酸结构。这些图案在压力管理中有潜在的作用。这些蛋白质分布在细胞的不同位置。在全基因组分析的基础上,通过湿室试验,研究了Cd和pH胁迫下的黄颡鱼(C. vulgaris)的生长曲线。结论:本研究结果揭示了一种可能性,即普通葡萄球菌具有一些在生存中起关键作用的机制和基因。此外,本研究不仅提供了胁迫相关基因的鉴定和表征,还为在有毒重金属和pH等不同胁迫条件下通过表达谱进一步鉴定、注释和确认奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信