Shuai Xiong, Meng Sun, Ying Zhang, Pei-Ran Kong, Lu Gan, Ling Gao, Ke Xu, Hai-Yin Wu, Dong-Ya Zhu, Yu-Hui Lin, Rui Li, Chun-Xia Luo
{"title":"Astrocytic BEST1 can serve as a target for functional recovery after ischemic stroke.","authors":"Shuai Xiong, Meng Sun, Ying Zhang, Pei-Ran Kong, Lu Gan, Ling Gao, Ke Xu, Hai-Yin Wu, Dong-Ya Zhu, Yu-Hui Lin, Rui Li, Chun-Xia Luo","doi":"10.1016/j.ymthe.2025.03.022","DOIUrl":null,"url":null,"abstract":"<p><p>Solid evidence from animal experiments supported the concept of peri-infarct tonic inhibition. Related drug targets have the potential to be translated for clinical stroke treatment. Recently, we reported the contribution of neuronal bestrophin-1 (BEST1)-mediated glutamate release to acute ischemic damage exacerbation in rodents. Now, we found a switch of abnormal BEST1 expression and function from neurons to astrocytes in the peri-infarct cortex following astrocytic activation. Excessive GABA was released through astrocytic BEST1 channel during the subacute phase of stroke, leading to sustained tonic inhibition. Astrocyte-specific knockdown of BEST1 promoted motor functional recovery, depending on reduced tonic inhibition. Moreover, we prepared self-assembled nanoparticles encapsulating siBest1 (SNP-siBest1), which displayed high brain accumulation and long circulation and knocked down astrocytic BEST1 effectively and safely. Systemic treatment with SNP-siBest1 after ischemic stroke showed a therapeutic effect in mice. Therefore, BEST1 is a potential target for stroke therapy from acute to subacute phase, and selective BEST1 blockers beyond nanoparticles are worth developing.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.03.022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid evidence from animal experiments supported the concept of peri-infarct tonic inhibition. Related drug targets have the potential to be translated for clinical stroke treatment. Recently, we reported the contribution of neuronal bestrophin-1 (BEST1)-mediated glutamate release to acute ischemic damage exacerbation in rodents. Now, we found a switch of abnormal BEST1 expression and function from neurons to astrocytes in the peri-infarct cortex following astrocytic activation. Excessive GABA was released through astrocytic BEST1 channel during the subacute phase of stroke, leading to sustained tonic inhibition. Astrocyte-specific knockdown of BEST1 promoted motor functional recovery, depending on reduced tonic inhibition. Moreover, we prepared self-assembled nanoparticles encapsulating siBest1 (SNP-siBest1), which displayed high brain accumulation and long circulation and knocked down astrocytic BEST1 effectively and safely. Systemic treatment with SNP-siBest1 after ischemic stroke showed a therapeutic effect in mice. Therefore, BEST1 is a potential target for stroke therapy from acute to subacute phase, and selective BEST1 blockers beyond nanoparticles are worth developing.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.