Decoy-PROTAC for specific degradation of "Undruggable" STAT3 transcription factor.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Shiqing Li, Xin Wang, Jiabao Huang, Xiuping Cao, Yana Liu, Shiyan Bai, Tao Zeng, Qi Chen, Chunsen Li, Chunhua Lu, Huanghao Yang
{"title":"Decoy-PROTAC for specific degradation of \"Undruggable\" STAT3 transcription factor.","authors":"Shiqing Li, Xin Wang, Jiabao Huang, Xiuping Cao, Yana Liu, Shiyan Bai, Tao Zeng, Qi Chen, Chunsen Li, Chunhua Lu, Huanghao Yang","doi":"10.1038/s41419-025-07535-x","DOIUrl":null,"url":null,"abstract":"<p><p>Signal transducer and activator of transcription 3 (STAT3) is widely recognized as an attractive target for cancer therapy due to its significant role in the initiation and progression of tumorigenesis. However, existing STAT3 inhibitors have suffered from drawbacks including poor efficacy, limited specificity, and undesirable off-target effects, due to the challenging nature of identifying active sites or allosteric regulatory pockets on STAT3 amenable to small-molecule inhibition. In response to these obstacles, we utilize the innovative proteolysis targeting chimera (PROTAC) technology to create a highly specific decoy-targeted protein degradation system for STAT3 protein, termed D-PROTAC. This system fuses DNA decoy that targets STAT3 with an E3 ligase ligand, utilizing a click chemistry approach. Experimental results demonstrate that D-PROTAC efficiently mediates the degradation of the STAT3 protein across various cancer cell types, leading to the downregulation of crucial downstream STAT3 targets, inhibiting tumor cell growth, triggering cell cycle arrest and apoptosis, and suppressing tumor immune evasion. Furthermore, D-PROTAC is capable of achieving significant tumor suppression in xenograft models. Overall, our research validates that D-PROTAC can successfully target and eliminate the \"undruggable\" STAT3, showcasing specificity and potent antitumor effects. This strategy will suggest a promising avenue for the development of targeted therapies against the critical functions of STAT3 in human cancers and potentially other diseases.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"197"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07535-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Signal transducer and activator of transcription 3 (STAT3) is widely recognized as an attractive target for cancer therapy due to its significant role in the initiation and progression of tumorigenesis. However, existing STAT3 inhibitors have suffered from drawbacks including poor efficacy, limited specificity, and undesirable off-target effects, due to the challenging nature of identifying active sites or allosteric regulatory pockets on STAT3 amenable to small-molecule inhibition. In response to these obstacles, we utilize the innovative proteolysis targeting chimera (PROTAC) technology to create a highly specific decoy-targeted protein degradation system for STAT3 protein, termed D-PROTAC. This system fuses DNA decoy that targets STAT3 with an E3 ligase ligand, utilizing a click chemistry approach. Experimental results demonstrate that D-PROTAC efficiently mediates the degradation of the STAT3 protein across various cancer cell types, leading to the downregulation of crucial downstream STAT3 targets, inhibiting tumor cell growth, triggering cell cycle arrest and apoptosis, and suppressing tumor immune evasion. Furthermore, D-PROTAC is capable of achieving significant tumor suppression in xenograft models. Overall, our research validates that D-PROTAC can successfully target and eliminate the "undruggable" STAT3, showcasing specificity and potent antitumor effects. This strategy will suggest a promising avenue for the development of targeted therapies against the critical functions of STAT3 in human cancers and potentially other diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信