{"title":"NDRG1 alleviates Erastin-induced ferroptosis of hepatocellular carcinoma.","authors":"Liuzheng Li, Tong Wu, Guocha Gong, Bo Li, Jiawei Feng, Leisheng Xu, Hairong Zhao, Xuechang Gao","doi":"10.1186/s12885-025-13954-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>NDRG1, a cell differentiation-associated factor, has recently emerged as a regulator ferroptosis. Nevertheless, its role in modulating ferroptosis within hepatocellular carcinoma (HCC) remains uncharacterized.</p><p><strong>Methods: </strong>The differential expression of NDRG1 and its prognostic value were analyzed in HCC using data from TCGA and GEO. Ferroptosis in HepG2 and Huh7 cells was assessed using flow cytometry, transmission electron microscopy, and propidium iodide staining following NDRG1 knockdown using shRNA. RNA-seq was performed to characterize the mRNA expression profiles in HepG2 cells, identifying differentially expressed mRNAs (DE-mRNAs) and NDRG1-related hub genes.</p><p><strong>Results: </strong>NDRG1 was overexpressed in multiple malignant tumors, including HCC, and was associated with a significantly poor prognosis in HCC patients. A nomogram model integrating NDRG1 expression and clinical parameters demonstrated robust prognostic accuracy. NDRG1 knockdown potentiated erastin-induced alterations in Fe<sup>2+</sup>, total ROS, lipid ROS, and ferroptosis markers (PTGS2, ACSL4, GPX4, SLC7A11, GSH, GSSG), while exacerbating mitochondrial ultrastructural damage in HepG2 and Huh7 cells. Erastin induction elicited 1,056 DE-mRNAs, while subsequent NDRG1 knockdown revealed 1,323 DE-mRNAs in HepG2 cells. These DE-mRNAs are mainly involved in metastasis, immunity, growth, ferroptosis, and are associated with AMPK, MAPK, and PI3K/AKT pathways. Moreover, NDRG1 potentially interacted with HSPA8, CDH1, ALDOC, ANGPTL4, ANKRD37, CA9, ERBB3, FOS. qRT-PCR confirmed their expression changes consistent with RNA-seq.</p><p><strong>Conclusion: </strong>NDRG1 exhibits strong predictive value for HCC, and accelerates tumor progression by suppressing ferroptosis.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"522"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13954-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: NDRG1, a cell differentiation-associated factor, has recently emerged as a regulator ferroptosis. Nevertheless, its role in modulating ferroptosis within hepatocellular carcinoma (HCC) remains uncharacterized.
Methods: The differential expression of NDRG1 and its prognostic value were analyzed in HCC using data from TCGA and GEO. Ferroptosis in HepG2 and Huh7 cells was assessed using flow cytometry, transmission electron microscopy, and propidium iodide staining following NDRG1 knockdown using shRNA. RNA-seq was performed to characterize the mRNA expression profiles in HepG2 cells, identifying differentially expressed mRNAs (DE-mRNAs) and NDRG1-related hub genes.
Results: NDRG1 was overexpressed in multiple malignant tumors, including HCC, and was associated with a significantly poor prognosis in HCC patients. A nomogram model integrating NDRG1 expression and clinical parameters demonstrated robust prognostic accuracy. NDRG1 knockdown potentiated erastin-induced alterations in Fe2+, total ROS, lipid ROS, and ferroptosis markers (PTGS2, ACSL4, GPX4, SLC7A11, GSH, GSSG), while exacerbating mitochondrial ultrastructural damage in HepG2 and Huh7 cells. Erastin induction elicited 1,056 DE-mRNAs, while subsequent NDRG1 knockdown revealed 1,323 DE-mRNAs in HepG2 cells. These DE-mRNAs are mainly involved in metastasis, immunity, growth, ferroptosis, and are associated with AMPK, MAPK, and PI3K/AKT pathways. Moreover, NDRG1 potentially interacted with HSPA8, CDH1, ALDOC, ANGPTL4, ANKRD37, CA9, ERBB3, FOS. qRT-PCR confirmed their expression changes consistent with RNA-seq.
Conclusion: NDRG1 exhibits strong predictive value for HCC, and accelerates tumor progression by suppressing ferroptosis.
期刊介绍:
BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.