B cells and energy metabolism in HER2-positive DCIS: insights into breast cancer progression from spatial-omics analyses.

IF 7.4 1区 医学 Q1 Medicine
Helga Bergholtz, Jens Henrik Norum, Tonje Gulbrandsen Lien, Martina Landschoof Skrede, Øystein Garred, Therese Sørlie
{"title":"B cells and energy metabolism in HER2-positive DCIS: insights into breast cancer progression from spatial-omics analyses.","authors":"Helga Bergholtz, Jens Henrik Norum, Tonje Gulbrandsen Lien, Martina Landschoof Skrede, Øystein Garred, Therese Sørlie","doi":"10.1186/s13058-025-01990-2","DOIUrl":null,"url":null,"abstract":"<p><p>During breast tumor progression, the transition from ductal carcinoma in situ (DCIS) to invasive breast cancer is a critical step with large implications for prognosis. However, the mechanisms of invasion are still largely unknown. At the DCIS stage, there is an over-representation of HER2-positive lesions compared with invasive breast cancer. In this study, we investigated the associations between gene expression profiles in cancer cells and the immune microenvironment of HER2-positive DCIS and invasive breast tumors with concurrent DCIS using spatial transcriptomics. We found distinctly more B cells in the vicinity of DCIS ducts than in invasive tumor areas. There was higher expression of genes involved in energy metabolism in DCIS cancer cells than in invasive cancer cells and a positive correlation between expression of metabolic genes and B-cell abundance in DCIS. In contrast were processes related to epithelial to mesenchymal transition negatively correlated with B-cell abundance in DCIS. We also found significant correlation between expression of the B-cell-attracting chemokines CCL19, CCL21 and CXCL13 in stromal cells and B cell abundance in DCIS. This study indicates that B cells may play a protective role in the progression of HER2-positive DCIS to invasive breast cancer and that increased metabolic activity in intraductal cancer cells in combination with chemokines produced by stromal cells may influence the immune microenvironment of DCIS. These findings have implications for understanding HER2-positive breast cancer progression.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"44"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01990-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

During breast tumor progression, the transition from ductal carcinoma in situ (DCIS) to invasive breast cancer is a critical step with large implications for prognosis. However, the mechanisms of invasion are still largely unknown. At the DCIS stage, there is an over-representation of HER2-positive lesions compared with invasive breast cancer. In this study, we investigated the associations between gene expression profiles in cancer cells and the immune microenvironment of HER2-positive DCIS and invasive breast tumors with concurrent DCIS using spatial transcriptomics. We found distinctly more B cells in the vicinity of DCIS ducts than in invasive tumor areas. There was higher expression of genes involved in energy metabolism in DCIS cancer cells than in invasive cancer cells and a positive correlation between expression of metabolic genes and B-cell abundance in DCIS. In contrast were processes related to epithelial to mesenchymal transition negatively correlated with B-cell abundance in DCIS. We also found significant correlation between expression of the B-cell-attracting chemokines CCL19, CCL21 and CXCL13 in stromal cells and B cell abundance in DCIS. This study indicates that B cells may play a protective role in the progression of HER2-positive DCIS to invasive breast cancer and that increased metabolic activity in intraductal cancer cells in combination with chemokines produced by stromal cells may influence the immune microenvironment of DCIS. These findings have implications for understanding HER2-positive breast cancer progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
76
审稿时长
12 weeks
期刊介绍: Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信