{"title":"Whole-genome bisulfite sequencing of X and Y sperm in Holstein bulls reveals differences in autosomal methylation status.","authors":"Aishao Shangguan, Fengling Ding, Rui Ding, Wei Sun, Xihe Li, Xiangnan Bao, Tiezhu Zhang, Huihui Chi, Qi Xiong, Mingxin Chen, Yang Zhou, Shujun Zhang","doi":"10.1186/s12864-025-11402-6","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive understanding of the molecular differences between X and Y sperm in Holstein bull semen is crucial for advancing sex control technologies. While previous studies have primarily focused on proteomic and transcriptomic differences, the genome-wide DNA methylation differences between these sperm types remains largely unexplored. In this study, we employed whole-genome bisulfite sequencing to systematically compare the autosomal methylation profiles of X and Y sperm. Although global methylation patterns showed remarkable consistency between the two sperm types, our localized comparative analysis revealed 12,175 differentially methylated regions mapping to 2,041 genes (differentially methylated genes, DMGs). Functional enrichment analysis of these DMGs revealed their involvement in essential biological processes, particularly in energy metabolism and membrane voltage regulation. Notably, SPA17 and CHCHD3, identified as hypermethylated genes in X sperm in this study, have also been reported to show lower protein expression levels in X sperm compared to Y sperm. Furthermore, we identified 28 DMGs functionally associated with spermatogenesis and 5 DMGs related to fertilization. Our findings lay the foundation for thorough understanding of molecular differences between X and Y sperm in bull, providing essential insights for the development of more advanced sex control technologies in the future.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"282"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11402-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive understanding of the molecular differences between X and Y sperm in Holstein bull semen is crucial for advancing sex control technologies. While previous studies have primarily focused on proteomic and transcriptomic differences, the genome-wide DNA methylation differences between these sperm types remains largely unexplored. In this study, we employed whole-genome bisulfite sequencing to systematically compare the autosomal methylation profiles of X and Y sperm. Although global methylation patterns showed remarkable consistency between the two sperm types, our localized comparative analysis revealed 12,175 differentially methylated regions mapping to 2,041 genes (differentially methylated genes, DMGs). Functional enrichment analysis of these DMGs revealed their involvement in essential biological processes, particularly in energy metabolism and membrane voltage regulation. Notably, SPA17 and CHCHD3, identified as hypermethylated genes in X sperm in this study, have also been reported to show lower protein expression levels in X sperm compared to Y sperm. Furthermore, we identified 28 DMGs functionally associated with spermatogenesis and 5 DMGs related to fertilization. Our findings lay the foundation for thorough understanding of molecular differences between X and Y sperm in bull, providing essential insights for the development of more advanced sex control technologies in the future.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.