Genome-wide association study identifies elite alleles of FLA2 and FLA9 controlling flag leaf angle in rice.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tianhu Li, Zhen Yang, Yang Ang, Yingying Zhao, Yanan Zhang, Zhengbo Liu, Hao Sun, Yinping Chang, Mingyu Du, Xianping Cheng, Jinghan Sun, Erbao Liu
{"title":"Genome-wide association study identifies elite alleles of FLA2 and FLA9 controlling flag leaf angle in rice.","authors":"Tianhu Li, Zhen Yang, Yang Ang, Yingying Zhao, Yanan Zhang, Zhengbo Liu, Hao Sun, Yinping Chang, Mingyu Du, Xianping Cheng, Jinghan Sun, Erbao Liu","doi":"10.1186/s12864-025-11487-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In hybrid rice seed production, rice varieties with a small flag leaf angle (FLA) experience obstacles to cross-pollination at the early heading stage, and farmers usually need to remove flag leaves to achieve artificial pollination. Therefore, the cultivation of rice varieties with large FLAs can not only save a substantial amount of labour in the leaf-cutting process during artificial pollination but also accelerate the mechanization of hybrid rice seed production.</p><p><strong>Results: </strong>In this study, 431 rice accessions were included in a genome-wide association study (GWAS) to identify quantitative trait loci (QTLs) and the superior haplotypes for rice FLA in 2022 and 2023. The aim of the study was to identify new QTLs and provide germplasm resources for the genetic improvement of rice FLA. The population exhibited rich phenotypic variation in FLA in both years. The FLA GWAS was performed with more than 3 million single-nucleotide polymorphisms (SNPs), and eight QTLs associated with FLA were detected; of these, six QTLs located on rice chromosomes 1, 2, 8 and 9 were novel and detected in both years. In addition, these QTLs were analysed by haplotype analysis and functional annotation, and FLA2 and FLA9, which encode xyloglucan fucosyltransferase and cytokinin-O-glucosyltransferase 2, respectively, were identified as candidate genes for FLA regulation in rice. Quantitative real-time polymerase chain reaction (qRT‒PCR) results validated FLA2 and FLA9 as candidate genes. The results of this study showed that the elite alleles of FLA2 and FLA9 can increase FLA in rice. Excellent parents for FLA improvement were predicted through pyramiding breeding.</p><p><strong>Conclusions: </strong>A total of six new QTLs and two candidate genes (FLA2 and FLA9) were identified by a GWAS of 431 rice accessions over two years. The elite alleles and excellent parents predicted in our study can provide important information for the functional analysis of rice FLA-related genes and improvement through pyramiding breeding.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"280"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11487-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In hybrid rice seed production, rice varieties with a small flag leaf angle (FLA) experience obstacles to cross-pollination at the early heading stage, and farmers usually need to remove flag leaves to achieve artificial pollination. Therefore, the cultivation of rice varieties with large FLAs can not only save a substantial amount of labour in the leaf-cutting process during artificial pollination but also accelerate the mechanization of hybrid rice seed production.

Results: In this study, 431 rice accessions were included in a genome-wide association study (GWAS) to identify quantitative trait loci (QTLs) and the superior haplotypes for rice FLA in 2022 and 2023. The aim of the study was to identify new QTLs and provide germplasm resources for the genetic improvement of rice FLA. The population exhibited rich phenotypic variation in FLA in both years. The FLA GWAS was performed with more than 3 million single-nucleotide polymorphisms (SNPs), and eight QTLs associated with FLA were detected; of these, six QTLs located on rice chromosomes 1, 2, 8 and 9 were novel and detected in both years. In addition, these QTLs were analysed by haplotype analysis and functional annotation, and FLA2 and FLA9, which encode xyloglucan fucosyltransferase and cytokinin-O-glucosyltransferase 2, respectively, were identified as candidate genes for FLA regulation in rice. Quantitative real-time polymerase chain reaction (qRT‒PCR) results validated FLA2 and FLA9 as candidate genes. The results of this study showed that the elite alleles of FLA2 and FLA9 can increase FLA in rice. Excellent parents for FLA improvement were predicted through pyramiding breeding.

Conclusions: A total of six new QTLs and two candidate genes (FLA2 and FLA9) were identified by a GWAS of 431 rice accessions over two years. The elite alleles and excellent parents predicted in our study can provide important information for the functional analysis of rice FLA-related genes and improvement through pyramiding breeding.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信