Diazinon induces testicular dysfunction and testicular cell damage through increased reactive oxygen species production in mouse.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Ran Lee, Won-Young Lee, Dong-Wook Kim, Hyun-Jung Park
{"title":"Diazinon induces testicular dysfunction and testicular cell damage through increased reactive oxygen species production in mouse.","authors":"Ran Lee, Won-Young Lee, Dong-Wook Kim, Hyun-Jung Park","doi":"10.1038/s41420-025-02399-8","DOIUrl":null,"url":null,"abstract":"<p><p>Diazinon (DZN) is an organophosphorus compound used as a pesticide and is an environmentally hazardous substance to which the human body is commonly exposed. In this study, we evaluated the toxicity of DZN to the male reproductive in mice. For in vivo experiments, mice were intraperitoneally injected with 30 mg/kg DZN for 35 days. Microscopic analysis revealed that the diameter of the spermatogonia in the testes decreased, and the number of differentiating germ cells decreased. Sperm motility in mice injected with DZN was reduced, and slow motility was observed. The rate of neck deformation in the sperm increased in DZN-treated mice. The number of germ and Sertoli cells decreased, and the levels of serum testosterone and steroidogenesis markers also decreased in DZN-treated mice. In addition, DZN-induced oxidative stress in the testes. For in vitro experiments, DZN was toxic to GC-1 spermatogonia and TM4 and TM3 cells derived from mouse testes. DZN generated reactive oxygen species (ROS) and induced mitochondrial dysfunction, suggesting a molecular mechanism underlying ROS-induced cell death. DZN upregulated BAD, cleaved-caspase 3, and phospho-p53 at the cellular level. We also found that this toxicity could be mitigated by N-acetyl-l-cysteine, an ROS inhibitor.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"113"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02399-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diazinon (DZN) is an organophosphorus compound used as a pesticide and is an environmentally hazardous substance to which the human body is commonly exposed. In this study, we evaluated the toxicity of DZN to the male reproductive in mice. For in vivo experiments, mice were intraperitoneally injected with 30 mg/kg DZN for 35 days. Microscopic analysis revealed that the diameter of the spermatogonia in the testes decreased, and the number of differentiating germ cells decreased. Sperm motility in mice injected with DZN was reduced, and slow motility was observed. The rate of neck deformation in the sperm increased in DZN-treated mice. The number of germ and Sertoli cells decreased, and the levels of serum testosterone and steroidogenesis markers also decreased in DZN-treated mice. In addition, DZN-induced oxidative stress in the testes. For in vitro experiments, DZN was toxic to GC-1 spermatogonia and TM4 and TM3 cells derived from mouse testes. DZN generated reactive oxygen species (ROS) and induced mitochondrial dysfunction, suggesting a molecular mechanism underlying ROS-induced cell death. DZN upregulated BAD, cleaved-caspase 3, and phospho-p53 at the cellular level. We also found that this toxicity could be mitigated by N-acetyl-l-cysteine, an ROS inhibitor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信