{"title":"ATP-Pred: Prediction of Protein-ATP Binding Residues via Fusion of Residue-Level Embeddings and Kolmogorov-Arnold Network.","authors":"Lingrong Zhang, Taigang Liu","doi":"10.1021/acs.jcim.5c00016","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately identifying protein-ATP binding residues is essential for understanding biological processes and designing drugs. However, current sequence-based methods have limitations, such as difficulties in extracting discriminative features and the need for more efficient algorithms. Additionally, methods based on multiple sequence alignments often face challenges in handling large-scale predictions. To address these issues, we developed ATP-Pred, a sequence-based method for predicting ATP-binding residues in proteins. This model applies transfer learning by using two recently developed pretrain protein language models, Ankh and ProstT5, to extract residue-level embeddings that capture protein functionality. ATP-Pred also integrates a CNN-BiLSTM network and a Kolmogorov-Arnold network to build the prediction model. To handle data imbalance, we introduced a weighted focal loss function. Experimental results on three independent test data sets showed that ATP-Pred outperforms most existing methods. Its generalizability was further validated on four protein-mononucleotide binding residue data sets, where it delivered promising results. These findings suggest that ATP-Pred is a robust and reliable predictor.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3812-3826"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00016","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately identifying protein-ATP binding residues is essential for understanding biological processes and designing drugs. However, current sequence-based methods have limitations, such as difficulties in extracting discriminative features and the need for more efficient algorithms. Additionally, methods based on multiple sequence alignments often face challenges in handling large-scale predictions. To address these issues, we developed ATP-Pred, a sequence-based method for predicting ATP-binding residues in proteins. This model applies transfer learning by using two recently developed pretrain protein language models, Ankh and ProstT5, to extract residue-level embeddings that capture protein functionality. ATP-Pred also integrates a CNN-BiLSTM network and a Kolmogorov-Arnold network to build the prediction model. To handle data imbalance, we introduced a weighted focal loss function. Experimental results on three independent test data sets showed that ATP-Pred outperforms most existing methods. Its generalizability was further validated on four protein-mononucleotide binding residue data sets, where it delivered promising results. These findings suggest that ATP-Pred is a robust and reliable predictor.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.