Seminal plasma proteomics of asymptomatic COVID-19 patients reveals disruption of male reproductive function.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jialyu Huang, Yufang Su, Jiawei Wang, Zheng Fang, Yiwei Zhang, Hong Chen, Xinxia Wan, Yuanhuan Xiong, Ning Song, Houyang Chen, Xingwu Wu
{"title":"Seminal plasma proteomics of asymptomatic COVID-19 patients reveals disruption of male reproductive function.","authors":"Jialyu Huang, Yufang Su, Jiawei Wang, Zheng Fang, Yiwei Zhang, Hong Chen, Xinxia Wan, Yuanhuan Xiong, Ning Song, Houyang Chen, Xingwu Wu","doi":"10.1186/s12864-025-11473-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A considerable proportion of males suffer from asymptomatic SARS-CoV-2 infection, while the effect on reproductive function and underlying pathomechanisms remain unclear.</p><p><strong>Results: </strong>The total sperm count decreased evidently after asymptomatic infection, yet all semen samples were tested to be SARS-CoV-2 RNA negative. Through label‑free quantitative proteomic profiling, a total of 733 proteins were further identified in seminal plasma from 11 COVID-19 patients and seven uninfected controls. Of the 37 differentially expressed proteins, 23 were upregulated and 14 were downregulated in the COVID-19 group compared with control. Functional annotations in Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome showed that these proteins were highly enriched in infection, inflammation, and immunity-related pathways as well as spermatogenesis-associated biological process. Four proteins were significantly correlated with one or more semen parameters in Spearman's coefficient analysis, and seven were filtered as potential hub proteins from the interaction network by MCODE and Cytohubba algorithms. Furthermore, we verified the proteomic results by Western blot analysis of three representative proteins (ITLN1, GSTM2, and PSAP) in the validation cohort.</p><p><strong>Conclusions: </strong>In summary, our study showed that acute asymptomatic COVID-19 could alter the seminal plasma protein profile without direct testicular infection and consequently lead to impaired semen quality. These novel findings should enlighten the physicians about the adverse effects of SARS-CoV-2 infection on male fertility, and provide valuable resources for reproductive biologists to further decipher the molecular functions.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"281"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11473-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: A considerable proportion of males suffer from asymptomatic SARS-CoV-2 infection, while the effect on reproductive function and underlying pathomechanisms remain unclear.

Results: The total sperm count decreased evidently after asymptomatic infection, yet all semen samples were tested to be SARS-CoV-2 RNA negative. Through label‑free quantitative proteomic profiling, a total of 733 proteins were further identified in seminal plasma from 11 COVID-19 patients and seven uninfected controls. Of the 37 differentially expressed proteins, 23 were upregulated and 14 were downregulated in the COVID-19 group compared with control. Functional annotations in Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome showed that these proteins were highly enriched in infection, inflammation, and immunity-related pathways as well as spermatogenesis-associated biological process. Four proteins were significantly correlated with one or more semen parameters in Spearman's coefficient analysis, and seven were filtered as potential hub proteins from the interaction network by MCODE and Cytohubba algorithms. Furthermore, we verified the proteomic results by Western blot analysis of three representative proteins (ITLN1, GSTM2, and PSAP) in the validation cohort.

Conclusions: In summary, our study showed that acute asymptomatic COVID-19 could alter the seminal plasma protein profile without direct testicular infection and consequently lead to impaired semen quality. These novel findings should enlighten the physicians about the adverse effects of SARS-CoV-2 infection on male fertility, and provide valuable resources for reproductive biologists to further decipher the molecular functions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信