Kazim Ercan, Mehmet Akif Dundar, Hamza Kemal Akyildiz
{"title":"Investigating the Flexural Behavior of Ultra-High-Molecular-Weight Polyethylene at a Low Bending Rate: Experimental and Numerical Study","authors":"Kazim Ercan, Mehmet Akif Dundar, Hamza Kemal Akyildiz","doi":"10.1134/S0025654424605032","DOIUrl":null,"url":null,"abstract":"<p>This study examines the mechanical behavior of ultra-high-molecular-weight polyethylene (UHMWPE) under three-point bending at a low strain rate, with a particular focus on evaluating the influence of its distinct tensile and compressive properties on its bending response through finite element analysis. The tensile and compressive stress-strain characteristics of UHMWPE were experimentally determined at a strain rate of 5 × 10<sup>−3</sup> s<sup>–1</sup>, complemented by three-point bending tests conducted at a constant loading speed of 0.05 mm/s. To predict the flexural behavior of UHMWPE, two finite element models were constructed using the SAMP-1 material model in LS-DYNA: one incorporating the Von-Mises yield surface, which assumes similar material behavior in tension and compression, and the other employing the Drucker-Prager yield surface, which accounts for dissimilar material behaviors between tension and compression. Results of the numerical analyses revealed substantial discrepancies between the predictions of the Von-Mises and Drucker-Prager models, with the latter offering a more precise prediction of the flexural response of UHMWPE, thereby underscoring the critical importance of accounting for dissimilar material behaviors to achieve enhanced predictive accuracy.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 8","pages":"3968 - 3984"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424605032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the mechanical behavior of ultra-high-molecular-weight polyethylene (UHMWPE) under three-point bending at a low strain rate, with a particular focus on evaluating the influence of its distinct tensile and compressive properties on its bending response through finite element analysis. The tensile and compressive stress-strain characteristics of UHMWPE were experimentally determined at a strain rate of 5 × 10−3 s–1, complemented by three-point bending tests conducted at a constant loading speed of 0.05 mm/s. To predict the flexural behavior of UHMWPE, two finite element models were constructed using the SAMP-1 material model in LS-DYNA: one incorporating the Von-Mises yield surface, which assumes similar material behavior in tension and compression, and the other employing the Drucker-Prager yield surface, which accounts for dissimilar material behaviors between tension and compression. Results of the numerical analyses revealed substantial discrepancies between the predictions of the Von-Mises and Drucker-Prager models, with the latter offering a more precise prediction of the flexural response of UHMWPE, thereby underscoring the critical importance of accounting for dissimilar material behaviors to achieve enhanced predictive accuracy.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.