Investigating the Flexural Behavior of Ultra-High-Molecular-Weight Polyethylene at a Low Bending Rate: Experimental and Numerical Study

IF 0.6 4区 工程技术 Q4 MECHANICS
Kazim Ercan, Mehmet Akif Dundar, Hamza Kemal Akyildiz
{"title":"Investigating the Flexural Behavior of Ultra-High-Molecular-Weight Polyethylene at a Low Bending Rate: Experimental and Numerical Study","authors":"Kazim Ercan,&nbsp;Mehmet Akif Dundar,&nbsp;Hamza Kemal Akyildiz","doi":"10.1134/S0025654424605032","DOIUrl":null,"url":null,"abstract":"<p>This study examines the mechanical behavior of ultra-high-molecular-weight polyethylene (UHMWPE) under three-point bending at a low strain rate, with a particular focus on evaluating the influence of its distinct tensile and compressive properties on its bending response through finite element analysis. The tensile and compressive stress-strain characteristics of UHMWPE were experimentally determined at a strain rate of 5 × 10<sup>−3</sup> s<sup>–1</sup>, complemented by three-point bending tests conducted at a constant loading speed of 0.05 mm/s. To predict the flexural behavior of UHMWPE, two finite element models were constructed using the SAMP-1 material model in LS-DYNA: one incorporating the Von-Mises yield surface, which assumes similar material behavior in tension and compression, and the other employing the Drucker-Prager yield surface, which accounts for dissimilar material behaviors between tension and compression. Results of the numerical analyses revealed substantial discrepancies between the predictions of the Von-Mises and Drucker-Prager models, with the latter offering a more precise prediction of the flexural response of UHMWPE, thereby underscoring the critical importance of accounting for dissimilar material behaviors to achieve enhanced predictive accuracy.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 8","pages":"3968 - 3984"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424605032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the mechanical behavior of ultra-high-molecular-weight polyethylene (UHMWPE) under three-point bending at a low strain rate, with a particular focus on evaluating the influence of its distinct tensile and compressive properties on its bending response through finite element analysis. The tensile and compressive stress-strain characteristics of UHMWPE were experimentally determined at a strain rate of 5 × 10−3 s–1, complemented by three-point bending tests conducted at a constant loading speed of 0.05 mm/s. To predict the flexural behavior of UHMWPE, two finite element models were constructed using the SAMP-1 material model in LS-DYNA: one incorporating the Von-Mises yield surface, which assumes similar material behavior in tension and compression, and the other employing the Drucker-Prager yield surface, which accounts for dissimilar material behaviors between tension and compression. Results of the numerical analyses revealed substantial discrepancies between the predictions of the Von-Mises and Drucker-Prager models, with the latter offering a more precise prediction of the flexural response of UHMWPE, thereby underscoring the critical importance of accounting for dissimilar material behaviors to achieve enhanced predictive accuracy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信