An Empirical Scrutinization of Four Crisp Clustering Methods with Four Distance Metrics and One Straightforward Interpretation Rule

IF 0.5 4区 数学 Q3 MATHEMATICS
T. A. Alvandyan, S. Shalileh
{"title":"An Empirical Scrutinization of Four Crisp Clustering Methods with Four Distance Metrics and One Straightforward Interpretation Rule","authors":"T. A. Alvandyan,&nbsp;S. Shalileh","doi":"10.1134/S1064562424602002","DOIUrl":null,"url":null,"abstract":"<p>Clustering has always been in great demand by scientific and industrial communities. However, due to the lack of ground truth, interpreting its obtained results can be debatable. The current research provides an empirical benchmark on the efficiency of three popular and one recently proposed crisp clustering methods. To this end, we extensively analyzed these (four) methods by applying them to nine real-world and 420 synthetic datasets using four different values of <i>p</i> in Minkowski distance. Furthermore, we validated a previously proposed yet not well-known straightforward rule to interpret the recovered clusters. Our computations showed (i) Nesterov gradient descent clustering is the most effective clustering method using our real-world data, while K-Means had edge over it using our synthetic data; (ii) Minkowski distance with <i>p</i> = 1 is the most effective distance function, (iii) the investigated cluster interpretation rule is intuitive and valid.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1 supplement","pages":"S236 - S250"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1064562424602002.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424602002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering has always been in great demand by scientific and industrial communities. However, due to the lack of ground truth, interpreting its obtained results can be debatable. The current research provides an empirical benchmark on the efficiency of three popular and one recently proposed crisp clustering methods. To this end, we extensively analyzed these (four) methods by applying them to nine real-world and 420 synthetic datasets using four different values of p in Minkowski distance. Furthermore, we validated a previously proposed yet not well-known straightforward rule to interpret the recovered clusters. Our computations showed (i) Nesterov gradient descent clustering is the most effective clustering method using our real-world data, while K-Means had edge over it using our synthetic data; (ii) Minkowski distance with p = 1 is the most effective distance function, (iii) the investigated cluster interpretation rule is intuitive and valid.

用四种距离度量和一种直接解释规则对四种简洁聚类方法进行实证检验
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信