Mechanism of Degradation of Polymer Fuel Cell Cathode Catalyst: Research and Modeling

IF 0.7 4区 工程技术 Q4 ENGINEERING, CHEMICAL
E. M. Koltsova, V. A. Vasilenko, A. V. Zhensa, V. A. Bogdanovskaya, M. V. Radina
{"title":"Mechanism of Degradation of Polymer Fuel Cell Cathode Catalyst: Research and Modeling","authors":"E. M. Koltsova,&nbsp;V. A. Vasilenko,&nbsp;A. V. Zhensa,&nbsp;V. A. Bogdanovskaya,&nbsp;M. V. Radina","doi":"10.1134/S0040579525601001","DOIUrl":null,"url":null,"abstract":"<p>The article presents a mathematical model of the degradation of the active surface of a platinum catalyst in a hydrogen–air (oxygen) fuel cell with a proton-conducting polymer electrolyte. The mathematical model is a system of integral–differential equations solved by the finite-difference method. The model takes into account the following phenomena: electrochemical dissolution of platinum nanoparticles, particle growth (due to deposition and migration, Ostwald ripening, and coalescence of platinum nanoparticles on the surface of a carbon carrier), diffusion of platinum ions in the ionomer, and their introduction into the membrane. The calculations are performed for two types of platinum catalysts: a commercial monoplatinum system synthesized on carbon black and a catalytic system synthesized on carbon nanotubes. As a result of modeling, data are obtained on the size distribution of the platinum particles and the values of the electrochemically active surface area depending on the time of accelerated stress testing.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"58 6","pages":"1945 - 1956"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Foundations of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0040579525601001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents a mathematical model of the degradation of the active surface of a platinum catalyst in a hydrogen–air (oxygen) fuel cell with a proton-conducting polymer electrolyte. The mathematical model is a system of integral–differential equations solved by the finite-difference method. The model takes into account the following phenomena: electrochemical dissolution of platinum nanoparticles, particle growth (due to deposition and migration, Ostwald ripening, and coalescence of platinum nanoparticles on the surface of a carbon carrier), diffusion of platinum ions in the ionomer, and their introduction into the membrane. The calculations are performed for two types of platinum catalysts: a commercial monoplatinum system synthesized on carbon black and a catalytic system synthesized on carbon nanotubes. As a result of modeling, data are obtained on the size distribution of the platinum particles and the values of the electrochemically active surface area depending on the time of accelerated stress testing.

Abstract Image

聚合物燃料电池阴极催化剂降解机理的研究与模拟
本文建立了质子导电聚合物电解质下氢-空气(氧)燃料电池中铂催化剂活性表面降解的数学模型。数学模型是一个用有限差分法求解的积分-微分方程组。该模型考虑了以下现象:铂纳米粒子的电化学溶解、粒子生长(由于沉积和迁移、奥斯特瓦尔德成熟和铂纳米粒子在碳载体表面的聚结)、铂离子在离聚体中的扩散以及它们引入膜中。对两种类型的铂催化剂进行了计算:在炭黑上合成的商业单铂体系和在碳纳米管上合成的催化体系。通过建模,获得了铂颗粒的尺寸分布和电化学活性表面积随加速应力测试时间变化的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
70
审稿时长
24 months
期刊介绍: Theoretical Foundations of Chemical Engineering is a comprehensive journal covering all aspects of theoretical and applied research in chemical engineering, including transport phenomena; surface phenomena; processes of mixture separation; theory and methods of chemical reactor design; combined processes and multifunctional reactors; hydromechanic, thermal, diffusion, and chemical processes and apparatus, membrane processes and reactors; biotechnology; dispersed systems; nanotechnologies; process intensification; information modeling and analysis; energy- and resource-saving processes; environmentally clean processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信