Recent developments in phase space correlation control for charged-particle beams toward achieving arbitrary correlations

Gwanghui Ha
{"title":"Recent developments in phase space correlation control for charged-particle beams toward achieving arbitrary correlations","authors":"Gwanghui Ha","doi":"10.1007/s43673-025-00147-9","DOIUrl":null,"url":null,"abstract":"<div><p>Particle accelerators, originally developed to address fundamental questions about the universe, have become essential to various scientific disciplines. The broad adoption of accelerators was enabled by substantial advancements in beam manipulation techniques, which encompass methods for generating and controlling particle beams to optimize them for specific applications. Most of these manipulations rely on controlling the beam’s correlation in its phase space. While linear control and the correction of low-order nonlinearities have propelled particle accelerators to their current state, the exploration of more advanced control methods may provide new opportunities to achieve unprecedented beam qualities and conditions. Consequently, there is an increasing demand for control over higher-order nonlinearities. A recently developed method utilizing transverse wigglers shows potential in addressing such demands. Active research is also ongoing on diverse applications of the transverse wiggler-based method in various accelerator fields. This paper discusses methods for controlling highly nonlinear correlations and their applications.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-025-00147-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-025-00147-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Particle accelerators, originally developed to address fundamental questions about the universe, have become essential to various scientific disciplines. The broad adoption of accelerators was enabled by substantial advancements in beam manipulation techniques, which encompass methods for generating and controlling particle beams to optimize them for specific applications. Most of these manipulations rely on controlling the beam’s correlation in its phase space. While linear control and the correction of low-order nonlinearities have propelled particle accelerators to their current state, the exploration of more advanced control methods may provide new opportunities to achieve unprecedented beam qualities and conditions. Consequently, there is an increasing demand for control over higher-order nonlinearities. A recently developed method utilizing transverse wigglers shows potential in addressing such demands. Active research is also ongoing on diverse applications of the transverse wiggler-based method in various accelerator fields. This paper discusses methods for controlling highly nonlinear correlations and their applications.

带电粒子束的相空间相关控制在实现任意相关方面的最新进展
粒子加速器最初是为了解决关于宇宙的基本问题而开发的,现在已经成为各种科学学科的必需品。加速器的广泛采用得益于光束操纵技术的重大进步,其中包括产生和控制粒子束的方法,以优化它们的特定应用。这些操作大多依赖于控制光束在其相空间中的相关性。虽然线性控制和低阶非线性校正已经将粒子加速器推进到目前的状态,但探索更先进的控制方法可能为实现前所未有的光束质量和条件提供新的机会。因此,对高阶非线性控制的需求越来越大。最近开发的一种利用横向摆动器的方法显示出解决此类需求的潜力。基于横向摆动器的方法在各种加速器领域的应用也在积极进行研究。本文讨论了控制高度非线性相关的方法及其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信