Solution of the Multimode Nonlinear Schrödinger Equation Using Physics-Informed Neural Networks

IF 0.5 4区 数学 Q3 MATHEMATICS
I. A. Chuprov, J. Gao, D. S. Efremenko, F. A. Buzaev, V. V. Zemlyakov
{"title":"Solution of the Multimode Nonlinear Schrödinger Equation Using Physics-Informed Neural Networks","authors":"I. A. Chuprov,&nbsp;J. Gao,&nbsp;D. S. Efremenko,&nbsp;F. A. Buzaev,&nbsp;V. V. Zemlyakov","doi":"10.1134/S1064562424602105","DOIUrl":null,"url":null,"abstract":"<p>Single-mode optical fibers (SMFs) have become the foundation of modern communication systems. However, their capacity is expected to reach its theoretical limit in the near future. The use of multimode fibers (MMF) is seen as one of the most promising solutions to address this capacity deficit. The multimode nonlinear Schrödinger equation (MMNLSE) describing light propagation in MMF is significantly more complex than the equations for SMF, making numerical simulations of MMF-based systems computationally costly and impractical for most realistic scenarios. In this paper, we apply physics-informed neural networks (PINNs) to solve the MMNLSE. We show that a simple implementation of PINNs does not yield satisfactory results. We investigate the convergence of PINN and propose a novel scaling transformation for the zeroth-order dispersion coefficient that allows PINN to account for all important physical effects. Our calculations show good agreement with the Split-Step Fourier (SSF) method for fiber lengths of up to several hundred meters.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1 supplement","pages":"S15 - S24"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1064562424602105.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424602105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-mode optical fibers (SMFs) have become the foundation of modern communication systems. However, their capacity is expected to reach its theoretical limit in the near future. The use of multimode fibers (MMF) is seen as one of the most promising solutions to address this capacity deficit. The multimode nonlinear Schrödinger equation (MMNLSE) describing light propagation in MMF is significantly more complex than the equations for SMF, making numerical simulations of MMF-based systems computationally costly and impractical for most realistic scenarios. In this paper, we apply physics-informed neural networks (PINNs) to solve the MMNLSE. We show that a simple implementation of PINNs does not yield satisfactory results. We investigate the convergence of PINN and propose a novel scaling transformation for the zeroth-order dispersion coefficient that allows PINN to account for all important physical effects. Our calculations show good agreement with the Split-Step Fourier (SSF) method for fiber lengths of up to several hundred meters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信