I. A. Chuprov, J. Gao, D. S. Efremenko, F. A. Buzaev, V. V. Zemlyakov
{"title":"Solution of the Multimode Nonlinear Schrödinger Equation Using Physics-Informed Neural Networks","authors":"I. A. Chuprov, J. Gao, D. S. Efremenko, F. A. Buzaev, V. V. Zemlyakov","doi":"10.1134/S1064562424602105","DOIUrl":null,"url":null,"abstract":"<p>Single-mode optical fibers (SMFs) have become the foundation of modern communication systems. However, their capacity is expected to reach its theoretical limit in the near future. The use of multimode fibers (MMF) is seen as one of the most promising solutions to address this capacity deficit. The multimode nonlinear Schrödinger equation (MMNLSE) describing light propagation in MMF is significantly more complex than the equations for SMF, making numerical simulations of MMF-based systems computationally costly and impractical for most realistic scenarios. In this paper, we apply physics-informed neural networks (PINNs) to solve the MMNLSE. We show that a simple implementation of PINNs does not yield satisfactory results. We investigate the convergence of PINN and propose a novel scaling transformation for the zeroth-order dispersion coefficient that allows PINN to account for all important physical effects. Our calculations show good agreement with the Split-Step Fourier (SSF) method for fiber lengths of up to several hundred meters.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1 supplement","pages":"S15 - S24"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1064562424602105.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424602105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-mode optical fibers (SMFs) have become the foundation of modern communication systems. However, their capacity is expected to reach its theoretical limit in the near future. The use of multimode fibers (MMF) is seen as one of the most promising solutions to address this capacity deficit. The multimode nonlinear Schrödinger equation (MMNLSE) describing light propagation in MMF is significantly more complex than the equations for SMF, making numerical simulations of MMF-based systems computationally costly and impractical for most realistic scenarios. In this paper, we apply physics-informed neural networks (PINNs) to solve the MMNLSE. We show that a simple implementation of PINNs does not yield satisfactory results. We investigate the convergence of PINN and propose a novel scaling transformation for the zeroth-order dispersion coefficient that allows PINN to account for all important physical effects. Our calculations show good agreement with the Split-Step Fourier (SSF) method for fiber lengths of up to several hundred meters.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.