L. M. Krutyansky, V. L. Preobrazhensky, P. Lecomte-Grosbras, J.-F. Witz, P. Margotin, A. Morch, O. Bou Matar, Ph. Pernod
{"title":"Evaluation of Bioresorbable Surgical Meshes by Ultrasound","authors":"L. M. Krutyansky, V. L. Preobrazhensky, P. Lecomte-Grosbras, J.-F. Witz, P. Margotin, A. Morch, O. Bou Matar, Ph. Pernod","doi":"10.3103/S1541308X2470050X","DOIUrl":null,"url":null,"abstract":"<p>We report a new approach to the quantitative ultrasonic examination of resorbable surgical meshes used for abdominal hernia. Information about the current state of a resorbable mesh is important for monitoring the prosthesis integration and the healing processes. The method presumes two successive steps. At first, an acoustic image of a mesh structure is obtained by scanning the object at a relatively high frequency and vectors of the reciprocal lattice are determined by the Fourier transform of the image. At the second step, the object is irradiated along the found direction of the reciprocal lattice by a low frequency wave inclined to the plane of the mesh. The signal of a back reflection is acquired and processed quantitatively as a function of tilt angle or frequency. On an example of model objects artificially fabricated with textile meshes, the ability of the structures under examination to effectively generate Bragg scattering is demonstrated. Comparative tests with objects imitating mesh resorption confirm the method’s ability to reveal mesh degradation.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"33 1","pages":"27 - 35"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X2470050X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report a new approach to the quantitative ultrasonic examination of resorbable surgical meshes used for abdominal hernia. Information about the current state of a resorbable mesh is important for monitoring the prosthesis integration and the healing processes. The method presumes two successive steps. At first, an acoustic image of a mesh structure is obtained by scanning the object at a relatively high frequency and vectors of the reciprocal lattice are determined by the Fourier transform of the image. At the second step, the object is irradiated along the found direction of the reciprocal lattice by a low frequency wave inclined to the plane of the mesh. The signal of a back reflection is acquired and processed quantitatively as a function of tilt angle or frequency. On an example of model objects artificially fabricated with textile meshes, the ability of the structures under examination to effectively generate Bragg scattering is demonstrated. Comparative tests with objects imitating mesh resorption confirm the method’s ability to reveal mesh degradation.
期刊介绍:
Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.