Optimal control method of regional power grid based on elastic carrying capacity analysis and day-ahead evaluation

Q2 Energy
Yu Zhang, Qingsheng Li
{"title":"Optimal control method of regional power grid based on elastic carrying capacity analysis and day-ahead evaluation","authors":"Yu Zhang,&nbsp;Qingsheng Li","doi":"10.1186/s42162-025-00506-8","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve the coordinated consumption and control of a high proportion of renewable energy in the current regional power grid while ensuring sufficient safety margins, this paper proposes an optimization control method based on elastic carrying capacity analysis and recent evaluation. Firstly, a cloud-edge-based sub-provincial collaborative intelligent control model is adopted, integrating power industry and Internet of Things (IoT) technology to realize grid state data perception through multiple sensors. Secondly, based on these data, grid assessment, grid vulnerability assessment, and grid mapping elastic potential analysis are completed. On this basis, a multi-scale collaborative intelligent control method for sub-provincial power grid transmission and distribution is then constructed. Finally, taking the Xingyi power grid as the research object, this paper applies the proposed method to improve the safety margin. The experimental results show that after applying the method, with an installed energy penetration rate close to 180%, reaches more than 95%. This indicates that the method proposed in this paper not only improves the consumption efficiency of new energy, but also significantly enhances the security and stability of the regional power grid, providing new ideas and practices for the sustainable development of regional power grids.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00506-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00506-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve the coordinated consumption and control of a high proportion of renewable energy in the current regional power grid while ensuring sufficient safety margins, this paper proposes an optimization control method based on elastic carrying capacity analysis and recent evaluation. Firstly, a cloud-edge-based sub-provincial collaborative intelligent control model is adopted, integrating power industry and Internet of Things (IoT) technology to realize grid state data perception through multiple sensors. Secondly, based on these data, grid assessment, grid vulnerability assessment, and grid mapping elastic potential analysis are completed. On this basis, a multi-scale collaborative intelligent control method for sub-provincial power grid transmission and distribution is then constructed. Finally, taking the Xingyi power grid as the research object, this paper applies the proposed method to improve the safety margin. The experimental results show that after applying the method, with an installed energy penetration rate close to 180%, reaches more than 95%. This indicates that the method proposed in this paper not only improves the consumption efficiency of new energy, but also significantly enhances the security and stability of the regional power grid, providing new ideas and practices for the sustainable development of regional power grids.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信