About Modifications of the Loss Function for the Causal Training of Physics-Informed Neural Networks

IF 0.5 4区 数学 Q3 MATHEMATICS
V. A. Es’kin, D. V. Davydov, E. D. Egorova, A. O. Malkhanov, M. A. Akhukov, M. E. Smorkalov
{"title":"About Modifications of the Loss Function for the Causal Training of Physics-Informed Neural Networks","authors":"V. A. Es’kin,&nbsp;D. V. Davydov,&nbsp;E. D. Egorova,&nbsp;A. O. Malkhanov,&nbsp;M. A. Akhukov,&nbsp;M. E. Smorkalov","doi":"10.1134/S106456242460194X","DOIUrl":null,"url":null,"abstract":"<p>A method is presented that allows to reduce a problem described by differential equations with initial and boundary conditions to a problem described only by differential equations which encapsulate initial and boundary conditions. It becomes possible to represent the loss function for physics-informed neural networks (PINNs) methodology in the form of a single term associated with modified differential equations. Thus eliminating the need to tune the scaling coefficients for the terms of loss function related to boundary and initial conditions. The weighted loss functions respecting causality were modified and new weighted loss functions, based on generalized functions, are derived. Numerical experiments have been carried out for a number of problems, demonstrating the accuracy of the proposed approaches. The neural network architecture was proposed for the Korteweg–De Vries equation, which is more relevant for this problem under consideration, and it demonstrates superior extrapolation of the solution in the space-time domain where training was not performed.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1 supplement","pages":"S172 - S192"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S106456242460194X.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S106456242460194X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A method is presented that allows to reduce a problem described by differential equations with initial and boundary conditions to a problem described only by differential equations which encapsulate initial and boundary conditions. It becomes possible to represent the loss function for physics-informed neural networks (PINNs) methodology in the form of a single term associated with modified differential equations. Thus eliminating the need to tune the scaling coefficients for the terms of loss function related to boundary and initial conditions. The weighted loss functions respecting causality were modified and new weighted loss functions, based on generalized functions, are derived. Numerical experiments have been carried out for a number of problems, demonstrating the accuracy of the proposed approaches. The neural network architecture was proposed for the Korteweg–De Vries equation, which is more relevant for this problem under consideration, and it demonstrates superior extrapolation of the solution in the space-time domain where training was not performed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信