A. Allahverdyan, A. Zhadan, I. Kondratov, O. Petrosian, A. Romanovskii, V. Kharin, Yin Li
{"title":"Heterogeneous Computational Scheduling Using Adaptive Neural Hyper-Heuristic","authors":"A. Allahverdyan, A. Zhadan, I. Kondratov, O. Petrosian, A. Romanovskii, V. Kharin, Yin Li","doi":"10.1134/S106456242460221X","DOIUrl":null,"url":null,"abstract":"<p>In heterogeneous computing environments, efficiently scheduling tasks, especially those forming Directed Acyclic Graphs (DAGs), is critical. This is particularly true for various Cloud and Edge computing tasks, as well as training Large Language Models (LLMs). This paper introduces a new scheduling approach using an Adaptive Neural Hyper-heuristic. By integrating a neural network trained with genetic algorithms, our method aims to minimize makespan. The approach uses a two-level algorithm: the first level prioritizes tasks using adaptive heuristic and the second level assigns resources based on the Earliest Finish Time (EFT) algorithm. Our tests show that this method significantly improves over traditional scheduling heuristics and other machine learning-based approaches. It reduces the makespan by 6.7% for small-scale DAGs and 28.49% for large-scale DAGs compared to the leading DONF algorithm. Additionally, it achieves a proximity of 84.08% to 96.43% to the optimal solutions found using Mixed-Integer Linear Programming (MILP), demonstrating its effectiveness in diverse computational settings.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1 supplement","pages":"S151 - S161"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S106456242460221X.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S106456242460221X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In heterogeneous computing environments, efficiently scheduling tasks, especially those forming Directed Acyclic Graphs (DAGs), is critical. This is particularly true for various Cloud and Edge computing tasks, as well as training Large Language Models (LLMs). This paper introduces a new scheduling approach using an Adaptive Neural Hyper-heuristic. By integrating a neural network trained with genetic algorithms, our method aims to minimize makespan. The approach uses a two-level algorithm: the first level prioritizes tasks using adaptive heuristic and the second level assigns resources based on the Earliest Finish Time (EFT) algorithm. Our tests show that this method significantly improves over traditional scheduling heuristics and other machine learning-based approaches. It reduces the makespan by 6.7% for small-scale DAGs and 28.49% for large-scale DAGs compared to the leading DONF algorithm. Additionally, it achieves a proximity of 84.08% to 96.43% to the optimal solutions found using Mixed-Integer Linear Programming (MILP), demonstrating its effectiveness in diverse computational settings.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.