{"title":"Distributed Online Learning Over Multitask Networks With Rank-One Model","authors":"Yitong Chen;Danqi Jin;Jie Chen;Cédric Richard;Wen Zhang;Gongping Huang;Jingdong Chen","doi":"10.1109/TSIPN.2025.3543973","DOIUrl":null,"url":null,"abstract":"Modeling multitask relations in distributed networks has garnered considerable interest in recent years. In this paper, we present a novel rank-one model, where all the optimal vectors to be estimated are scaled versions of an unknown vector to be determined. By considering the rank-one relation, we develop a constrained centralized optimization problem, and after a decoupling process, it is solved in a distributed way by using the projected gradient descent method. To perform an efficient calculation of this projection, we suggest substituting the intensive singular value decomposition with the computationally efficient power method. Additionally, local estimates targeting the same optimal vector are combined within a neighborhood to further improve their accuracy. Theoretical analyses of the proposed algorithm are conducted for star topologies, and conditions are derived to guarantee its stability in both the mean and mean-square senses. Finally, simulation results are presented to demonstrate the effectiveness of the proposed algorithms.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"314-328"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904872/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling multitask relations in distributed networks has garnered considerable interest in recent years. In this paper, we present a novel rank-one model, where all the optimal vectors to be estimated are scaled versions of an unknown vector to be determined. By considering the rank-one relation, we develop a constrained centralized optimization problem, and after a decoupling process, it is solved in a distributed way by using the projected gradient descent method. To perform an efficient calculation of this projection, we suggest substituting the intensive singular value decomposition with the computationally efficient power method. Additionally, local estimates targeting the same optimal vector are combined within a neighborhood to further improve their accuracy. Theoretical analyses of the proposed algorithm are conducted for star topologies, and conditions are derived to guarantee its stability in both the mean and mean-square senses. Finally, simulation results are presented to demonstrate the effectiveness of the proposed algorithms.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.