Tuning Intrinsic Electronic Properties via Size-Controlled Hydrothermal Crystalline Transformation from Tetragonal BiVO4 Spheroids to Monoclinic Plates

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Miquel Torras*, Marie-Anne Dourges, Justine Quinet, Anaëlle Demange, Thomas Cottineau, Jean-Pierre Delville, Marie-Helène Delville and Thierry Toupance*, 
{"title":"Tuning Intrinsic Electronic Properties via Size-Controlled Hydrothermal Crystalline Transformation from Tetragonal BiVO4 Spheroids to Monoclinic Plates","authors":"Miquel Torras*,&nbsp;Marie-Anne Dourges,&nbsp;Justine Quinet,&nbsp;Anaëlle Demange,&nbsp;Thomas Cottineau,&nbsp;Jean-Pierre Delville,&nbsp;Marie-Helène Delville and Thierry Toupance*,&nbsp;","doi":"10.1021/acsaem.5c0021510.1021/acsaem.5c00215","DOIUrl":null,"url":null,"abstract":"<p >This study reports the synthesis of monoclinic clinobisvanite BiVO<sub>4</sub> crystals with well-defined {010} and {110} facets and nanometer sizes through controlled reactant addition and hydrothermal treatment. By adjustment of the Bi<sup>3+</sup> precursor addition rate, nanoplates with significantly reduced edge length and thickness were obtained compared to conventional microplates. The formation process involves the nucleation of surfactant-coated tetragonal zircon BiVO<sub>4</sub> nanocrystals, which aggregate into spheroids before being transformed into monoclinic clinobisvanite plates. A proposed model explains this size-tuning mechanism through partial dissolution, phase transformation, and facet-selective growth. Reducing the size of tetragonal zircon BiVO<sub>4</sub> spheroids enhanced photocatalytic water oxidation, while for monoclinic clinobisvanite BiVO<sub>4</sub> plates, size reduction had the opposite effect. Photoelectrochemical analysis revealed a shift from n-type behavior in microplates to p-type behavior in nanoplates under negative bias. These findings highlight the need to integrate size control with surface chemistry, bulk doping, and defect engineering to optimize BiVO<sub>4</sub> for catalytic and electronic applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 6","pages":"3929–3941 3929–3941"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00215","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the synthesis of monoclinic clinobisvanite BiVO4 crystals with well-defined {010} and {110} facets and nanometer sizes through controlled reactant addition and hydrothermal treatment. By adjustment of the Bi3+ precursor addition rate, nanoplates with significantly reduced edge length and thickness were obtained compared to conventional microplates. The formation process involves the nucleation of surfactant-coated tetragonal zircon BiVO4 nanocrystals, which aggregate into spheroids before being transformed into monoclinic clinobisvanite plates. A proposed model explains this size-tuning mechanism through partial dissolution, phase transformation, and facet-selective growth. Reducing the size of tetragonal zircon BiVO4 spheroids enhanced photocatalytic water oxidation, while for monoclinic clinobisvanite BiVO4 plates, size reduction had the opposite effect. Photoelectrochemical analysis revealed a shift from n-type behavior in microplates to p-type behavior in nanoplates under negative bias. These findings highlight the need to integrate size control with surface chemistry, bulk doping, and defect engineering to optimize BiVO4 for catalytic and electronic applications.

Abstract Image

从四边形BiVO4球体到单斜板的热液相变调节本征电子性质
本研究报道了通过控制原料加成和水热处理,合成了具有{010}和{110}晶面清晰、纳米尺寸的单斜斜斜辉云石BiVO4晶体。通过调整Bi3+前驱体的添加速率,得到的纳米板的边缘长度和厚度都明显小于传统微孔板。形成过程包括表面活性剂包覆的四方锆石BiVO4纳米晶体的成核,这些纳米晶体聚集成球状,然后转化为单斜斜斜辉云石板。提出的模型通过部分溶解、相变和面选择性生长来解释这种尺寸调节机制。减小四方锆石BiVO4球体的尺寸有利于光催化水氧化,而减小单斜斜斜辉云石BiVO4板的尺寸则相反。光电化学分析表明,负偏压作用下,微孔板的n型行为转变为p型行为。这些发现强调了需要将尺寸控制与表面化学、体掺杂和缺陷工程相结合,以优化BiVO4的催化和电子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信