{"title":"Development of a Thin Three-Dimensional Ag Gradient Cu-Separator Scaffold for Stable and High-Energy Lithium Metal Batteries","authors":"Seoyoung Choi, Jinhyeon Jo and KwangSup Eom*, ","doi":"10.1021/acsaem.4c0295510.1021/acsaem.4c02955","DOIUrl":null,"url":null,"abstract":"<p >Adopting three-dimensional (3D) scaffolds onto lithium metal anode has emerged as a promising strategy to improve the charge/discharge stability of next-generation high-energy-density lithium metal batteries (LMBs). However, the undesirable growth of Li dendrites on the scaffold’s surface and their high-cost fabrication methods remain challenging. To address these issues, herein, a functional 3D scaffold employing a lithiophilic Ag concentration gradient (3D Ag@Cu) is designed, which can be prepared via a simple galvanic displacement. The lithiophilic Ag reacts with Li to form a solid solution, reducing the Li nucleation overpotential and promoting uniform Li deposition. Furthermore, the Ag-gradient structure facilitates the bottom-up growth of Li within the scaffold, maximizing the use of the internal space. Consequently, a full-cell equipped with the 3D Ag@Cu scaffold demonstrated higher cycling stability (89.03% capacity retention after 110 cycles) and rate performance (65.6% capacity retention at 2 C) compared to both LMBs with the planar Cu foil and the bare 3D Cu scaffold.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 6","pages":"3425–3433 3425–3433"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02955","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adopting three-dimensional (3D) scaffolds onto lithium metal anode has emerged as a promising strategy to improve the charge/discharge stability of next-generation high-energy-density lithium metal batteries (LMBs). However, the undesirable growth of Li dendrites on the scaffold’s surface and their high-cost fabrication methods remain challenging. To address these issues, herein, a functional 3D scaffold employing a lithiophilic Ag concentration gradient (3D Ag@Cu) is designed, which can be prepared via a simple galvanic displacement. The lithiophilic Ag reacts with Li to form a solid solution, reducing the Li nucleation overpotential and promoting uniform Li deposition. Furthermore, the Ag-gradient structure facilitates the bottom-up growth of Li within the scaffold, maximizing the use of the internal space. Consequently, a full-cell equipped with the 3D Ag@Cu scaffold demonstrated higher cycling stability (89.03% capacity retention after 110 cycles) and rate performance (65.6% capacity retention at 2 C) compared to both LMBs with the planar Cu foil and the bare 3D Cu scaffold.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.