{"title":"scMDCL: A Deep Collaborative Contrastive Learning Framework for Matched Single-Cell Multiomics Data Clustering","authors":"Wenhao Wu, Shudong Wang*, Kuijie Zhang, Hengxiao Li, Sibo Qiao, Yuanyuan Zhang and Shanchen Pang, ","doi":"10.1021/acs.jcim.4c0211410.1021/acs.jcim.4c02114","DOIUrl":null,"url":null,"abstract":"<p >Single-cell multiomics clustering integrates multiple omics data to analyze cellular heterogeneity and is crucial for uncovering complex biological processes and disease mechanisms. However, existing matched single-cell multiomics clustering methods often neglect the full utilization of intercellular relationships and the interactions and synergy between features from different omics, leading to suboptimal clustering performance. In this paper, we propose a deep collaborative contrastive learning framework for matched single-cell multiomics data clustering, named scMDCL. This framework fully leverages intercell relationships while enhancing feature interactions among identical cells across different omics data, thereby facilitating efficient clustering of multiomics data. Specifically, to fully utilize the topological information between cells, a graph autoencoder and a feature information enhancement module are designed for different omics, enabling the extraction and augmentation of cell features. Additionally, contrastive learning techniques are employed to strengthen the interactions among the different omics features of the same cell. Ultimately, multiomics deep collaborative clustering modules are utilized to achieve single-cell multiomics clustering. Extensive experiments conducted on nine publicly available single-cell multiomics datasets demonstrate the superior performance of the proposed framework in integrating multiomics data for clustering tasks.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 6","pages":"3048–3063 3048–3063"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02114","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell multiomics clustering integrates multiple omics data to analyze cellular heterogeneity and is crucial for uncovering complex biological processes and disease mechanisms. However, existing matched single-cell multiomics clustering methods often neglect the full utilization of intercellular relationships and the interactions and synergy between features from different omics, leading to suboptimal clustering performance. In this paper, we propose a deep collaborative contrastive learning framework for matched single-cell multiomics data clustering, named scMDCL. This framework fully leverages intercell relationships while enhancing feature interactions among identical cells across different omics data, thereby facilitating efficient clustering of multiomics data. Specifically, to fully utilize the topological information between cells, a graph autoencoder and a feature information enhancement module are designed for different omics, enabling the extraction and augmentation of cell features. Additionally, contrastive learning techniques are employed to strengthen the interactions among the different omics features of the same cell. Ultimately, multiomics deep collaborative clustering modules are utilized to achieve single-cell multiomics clustering. Extensive experiments conducted on nine publicly available single-cell multiomics datasets demonstrate the superior performance of the proposed framework in integrating multiomics data for clustering tasks.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.