Join Persistent Homology (JPH)-Based Machine Learning for Metalloprotein–Ligand Binding Affinity Prediction

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Yaxing Wang, Xiang Liu, Yipeng Zhang, Xiangjun Wang and Kelin Xia*, 
{"title":"Join Persistent Homology (JPH)-Based Machine Learning for Metalloprotein–Ligand Binding Affinity Prediction","authors":"Yaxing Wang,&nbsp;Xiang Liu,&nbsp;Yipeng Zhang,&nbsp;Xiangjun Wang and Kelin Xia*,&nbsp;","doi":"10.1021/acs.jcim.4c0230910.1021/acs.jcim.4c02309","DOIUrl":null,"url":null,"abstract":"<p >With the crucial role of metalloproteins in respiration, oxidative stress protection, photosynthesis, and drug metabolism, the design and discovery of drugs that can target metalloproteins are extremely important. Recently, enormous potential has been shown by topological data analysis (TDA) and TDA-based machine learning models in various steps of drug design and discovery. Here, we propose, for the first time, join persistent homology (JPH) and JPH-based machine learning models for metalloprotein–ligand binding affinity prediction. Mathematically, dramatically different from persistent homology and extended persistent homology, our JPH employs a set of filtration functions to generate a multistage filtration for the join of the original simplicial complex and a specially designed test simplicial complex. From the featurization perspective, our JPH-based molecular descriptors can provide a more comprehensive characterization of the intrinsic topological information of the data. Our JPH descriptors are combined with the gradient boosting tree (GBT) model for metalloprotein–ligand binding affinity prediction. The benchmark dataset for metalloprotein–ligand complexes from PDBbind-v2020 is employed for the validation and comparison of our model. It has been found that our JPH-GBT model can outperform all of the existing models, as far as we know. This demonstrates the great potential of our join persistent homology in the characterization of molecular structures and functions.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 6","pages":"2785–2793 2785–2793"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02309","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the crucial role of metalloproteins in respiration, oxidative stress protection, photosynthesis, and drug metabolism, the design and discovery of drugs that can target metalloproteins are extremely important. Recently, enormous potential has been shown by topological data analysis (TDA) and TDA-based machine learning models in various steps of drug design and discovery. Here, we propose, for the first time, join persistent homology (JPH) and JPH-based machine learning models for metalloprotein–ligand binding affinity prediction. Mathematically, dramatically different from persistent homology and extended persistent homology, our JPH employs a set of filtration functions to generate a multistage filtration for the join of the original simplicial complex and a specially designed test simplicial complex. From the featurization perspective, our JPH-based molecular descriptors can provide a more comprehensive characterization of the intrinsic topological information of the data. Our JPH descriptors are combined with the gradient boosting tree (GBT) model for metalloprotein–ligand binding affinity prediction. The benchmark dataset for metalloprotein–ligand complexes from PDBbind-v2020 is employed for the validation and comparison of our model. It has been found that our JPH-GBT model can outperform all of the existing models, as far as we know. This demonstrates the great potential of our join persistent homology in the characterization of molecular structures and functions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信