Atomistic investigation of diffusion processes at Al(Si)/Si(111) interphase boundaries obtained by simulated vapor deposition

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Li, Raj K. Koju, Yuri Mishin
{"title":"Atomistic investigation of diffusion processes at Al(Si)/Si(111) interphase boundaries obtained by simulated vapor deposition","authors":"Yang Li,&nbsp;Raj K. Koju,&nbsp;Yuri Mishin","doi":"10.1016/j.actamat.2025.120937","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular dynamics and parallel-replica dynamics simulations are applied to investigate the atomic structures and diffusion processes at <span><math><mrow><mtext>Al</mtext><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mo>∥</mo><mtext>Si</mtext><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow></mrow></math></span> interphase boundaries constructed by simulated vapor deposition of Al(Si) alloy on Si(111) substrates. Different orientation relationships and interface structures are obtained for different pre-deposition Si (111) surface reconstructions. Diffusion of both Al and Si atoms at the interfaces is calculated and compared with diffusion along grain boundaries, triple junctions, contact lines, and threading dislocations in the Al–Si system. It is found that <span><math><mrow><mtext>Al</mtext><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mo>∥</mo><mtext>Si</mtext><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow></mrow></math></span> interphase boundaries exhibit the lowest diffusivity among these structures and are closest to the lattice diffusivity. In most cases (except for the Si substrate), Si atoms are more mobile than Al atoms. The diffusion processes are typically mediated by Al vacancies and Si interstitial atoms migrating by either direct or indirect interstitial mechanisms.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120937"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002290","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular dynamics and parallel-replica dynamics simulations are applied to investigate the atomic structures and diffusion processes at Al{111}Si{111} interphase boundaries constructed by simulated vapor deposition of Al(Si) alloy on Si(111) substrates. Different orientation relationships and interface structures are obtained for different pre-deposition Si (111) surface reconstructions. Diffusion of both Al and Si atoms at the interfaces is calculated and compared with diffusion along grain boundaries, triple junctions, contact lines, and threading dislocations in the Al–Si system. It is found that Al{111}Si{111} interphase boundaries exhibit the lowest diffusivity among these structures and are closest to the lattice diffusivity. In most cases (except for the Si substrate), Si atoms are more mobile than Al atoms. The diffusion processes are typically mediated by Al vacancies and Si interstitial atoms migrating by either direct or indirect interstitial mechanisms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信