5D image reconstruction exploiting space-motion-echo sparsity for accelerated free-breathing quantitative liver MRI

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
MungSoo Kang , Ricardo Otazo , Gerald Behr , Youngwook Kee
{"title":"5D image reconstruction exploiting space-motion-echo sparsity for accelerated free-breathing quantitative liver MRI","authors":"MungSoo Kang ,&nbsp;Ricardo Otazo ,&nbsp;Gerald Behr ,&nbsp;Youngwook Kee","doi":"10.1016/j.media.2025.103532","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in 3D non-Cartesian multi-echo gradient-echo (mGRE) imaging and compressed sensing (CS)-based 4D (3D image space + 1D respiratory motion) motion-resolved image reconstruction, which applies temporal total variation to the respiratory motion dimension, have enabled free-breathing liver tissue MR parameter mapping. This technology now allows for robust reconstruction of high-resolution proton density fat fraction (PDFF), R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and quantitative susceptibility mapping (QSM), previously unattainable with conventional Cartesian mGRE imaging. However, long scan times remain a persistent challenge in free-breathing 3D non-Cartesian mGRE imaging. Recognizing that the underlying dimension of the imaging data is essentially 5D (4D + 1D echo signal evolution), we propose a CS-based 5D motion-resolved mGRE image reconstruction method to further accelerate the acquisition. Our approach integrates discrete wavelet transforms along the echo and spatial dimensions into a CS-based reconstruction model and devises a solution algorithm capable of handling such a 5D complex-valued array. Through phantom and in vivo human subject studies, we evaluated the effectiveness of leveraging unexplored correlations by comparing the proposed 5D reconstruction with the 4D reconstruction (i.e., motion-resolved reconstruction with temporal total variation) across a wide range of acceleration factors. The 5D reconstruction produced more reliable and consistent measurements of PDFF, R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and QSM compared to the 4D reconstruction. In conclusion, the proposed 5D motion-resolved image reconstruction demonstrates the feasibility of achieving accelerated, reliable, and free-breathing liver mGRE imaging for the measurement of PDFF, R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and QSM.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103532"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000702","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in 3D non-Cartesian multi-echo gradient-echo (mGRE) imaging and compressed sensing (CS)-based 4D (3D image space + 1D respiratory motion) motion-resolved image reconstruction, which applies temporal total variation to the respiratory motion dimension, have enabled free-breathing liver tissue MR parameter mapping. This technology now allows for robust reconstruction of high-resolution proton density fat fraction (PDFF), R2, and quantitative susceptibility mapping (QSM), previously unattainable with conventional Cartesian mGRE imaging. However, long scan times remain a persistent challenge in free-breathing 3D non-Cartesian mGRE imaging. Recognizing that the underlying dimension of the imaging data is essentially 5D (4D + 1D echo signal evolution), we propose a CS-based 5D motion-resolved mGRE image reconstruction method to further accelerate the acquisition. Our approach integrates discrete wavelet transforms along the echo and spatial dimensions into a CS-based reconstruction model and devises a solution algorithm capable of handling such a 5D complex-valued array. Through phantom and in vivo human subject studies, we evaluated the effectiveness of leveraging unexplored correlations by comparing the proposed 5D reconstruction with the 4D reconstruction (i.e., motion-resolved reconstruction with temporal total variation) across a wide range of acceleration factors. The 5D reconstruction produced more reliable and consistent measurements of PDFF, R2, and QSM compared to the 4D reconstruction. In conclusion, the proposed 5D motion-resolved image reconstruction demonstrates the feasibility of achieving accelerated, reliable, and free-breathing liver mGRE imaging for the measurement of PDFF, R2, and QSM.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信