Revisiting medical image retrieval via knowledge consolidation

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang Nan , Huichi Zhou , Xiaodan Xing , Giorgos Papanastasiou , Lei Zhu , Zhifan Gao , Alejandro F. Frangi , Guang Yang
{"title":"Revisiting medical image retrieval via knowledge consolidation","authors":"Yang Nan ,&nbsp;Huichi Zhou ,&nbsp;Xiaodan Xing ,&nbsp;Giorgos Papanastasiou ,&nbsp;Lei Zhu ,&nbsp;Zhifan Gao ,&nbsp;Alejandro F. Frangi ,&nbsp;Guang Yang","doi":"10.1016/j.media.2025.103553","DOIUrl":null,"url":null,"abstract":"<div><div>As artificial intelligence and digital medicine increasingly permeate healthcare systems, robust governance frameworks are essential to ensure ethical, secure, and effective implementation. In this context, medical image retrieval becomes a critical component of clinical data management, playing a vital role in decision-making and safeguarding patient information. Existing methods usually learn hash functions using bottleneck features, which fail to produce representative hash codes from blended embeddings. Although contrastive hashing has shown superior performance, current approaches often treat image retrieval as a classification task, using category labels to create positive/negative pairs. Moreover, many methods fail to address the out-of-distribution (OOD) issue when models encounter external OOD queries or adversarial attacks. In this work, we propose a novel method to consolidate knowledge of hierarchical features and optimization functions. We formulate the knowledge consolidation by introducing Depth-aware Representation Fusion (DaRF) and Structure-aware Contrastive Hashing (SCH). DaRF adaptively integrates shallow and deep representations into blended features, and SCH incorporates image fingerprints to enhance the adaptability of positive/negative pairings. These blended features further facilitate OOD detection and content-based recommendation, contributing to a secure AI-driven healthcare environment. Moreover, we present a content-guided ranking to improve the robustness and reproducibility of retrieval results. Our comprehensive assessments demonstrate that the proposed method could effectively recognize OOD samples and significantly outperform existing approaches in medical image retrieval (p<span><math><mrow><mi>&lt;</mi><mn>0</mn><mo>.</mo><mn>05</mn></mrow></math></span>). In particular, our method achieves a 5.6–38.9% improvement in mean Average Precision on the anatomical radiology dataset.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103553"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As artificial intelligence and digital medicine increasingly permeate healthcare systems, robust governance frameworks are essential to ensure ethical, secure, and effective implementation. In this context, medical image retrieval becomes a critical component of clinical data management, playing a vital role in decision-making and safeguarding patient information. Existing methods usually learn hash functions using bottleneck features, which fail to produce representative hash codes from blended embeddings. Although contrastive hashing has shown superior performance, current approaches often treat image retrieval as a classification task, using category labels to create positive/negative pairs. Moreover, many methods fail to address the out-of-distribution (OOD) issue when models encounter external OOD queries or adversarial attacks. In this work, we propose a novel method to consolidate knowledge of hierarchical features and optimization functions. We formulate the knowledge consolidation by introducing Depth-aware Representation Fusion (DaRF) and Structure-aware Contrastive Hashing (SCH). DaRF adaptively integrates shallow and deep representations into blended features, and SCH incorporates image fingerprints to enhance the adaptability of positive/negative pairings. These blended features further facilitate OOD detection and content-based recommendation, contributing to a secure AI-driven healthcare environment. Moreover, we present a content-guided ranking to improve the robustness and reproducibility of retrieval results. Our comprehensive assessments demonstrate that the proposed method could effectively recognize OOD samples and significantly outperform existing approaches in medical image retrieval (p<0.05). In particular, our method achieves a 5.6–38.9% improvement in mean Average Precision on the anatomical radiology dataset.

Abstract Image

基于知识整合的医学图像检索研究
随着人工智能和数字医学越来越多地渗透到医疗保健系统中,强大的治理框架对于确保道德、安全和有效的实施至关重要。在此背景下,医学图像检索成为临床数据管理的重要组成部分,在决策和保护患者信息方面发挥着至关重要的作用。现有的方法通常使用瓶颈特征来学习哈希函数,这种方法无法从混合嵌入中产生具有代表性的哈希码。尽管对比哈希显示出优异的性能,但目前的方法通常将图像检索视为分类任务,使用类别标签来创建正/负对。此外,当模型遇到外部OOD查询或对抗性攻击时,许多方法无法解决分布外(OOD)问题。在这项工作中,我们提出了一种新的方法来整合层次特征和优化函数的知识。我们通过引入深度感知表示融合(DaRF)和结构感知对比哈希(SCH)来实现知识整合。DaRF自适应地将浅表征和深表征融合到混合特征中,SCH结合图像指纹增强了正/负配对的适应性。这些混合功能进一步促进了OOD检测和基于内容的推荐,有助于构建安全的人工智能驱动的医疗保健环境。此外,我们提出了一个内容导向的排名,以提高检索结果的鲁棒性和可重复性。我们的综合评估表明,所提出的方法可以有效地识别OOD样本,并显著优于现有的医学图像检索方法(p<0.05)。特别是,我们的方法在解剖放射学数据集上的平均精度提高了5.6-38.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信