Medical SAM adapter: Adapting segment anything model for medical image segmentation

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Junde Wu , Ziyue Wang , Mingxuan Hong , Wei Ji , Huazhu Fu , Yanwu Xu , Min Xu , Yueming Jin
{"title":"Medical SAM adapter: Adapting segment anything model for medical image segmentation","authors":"Junde Wu ,&nbsp;Ziyue Wang ,&nbsp;Mingxuan Hong ,&nbsp;Wei Ji ,&nbsp;Huazhu Fu ,&nbsp;Yanwu Xu ,&nbsp;Min Xu ,&nbsp;Yueming Jin","doi":"10.1016/j.media.2025.103547","DOIUrl":null,"url":null,"abstract":"<div><div>The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation due to its impressive capabilities in various segmentation tasks and its prompt-based interface. However, recent studies and individual experiments have shown that SAM underperforms in medical image segmentation due to the lack of medical-specific knowledge. This raises the question of how to enhance SAM’s segmentation capability for medical images. We propose the Medical SAM Adapter (Med-SA), which is one of the first methods to integrate SAM into medical image segmentation. Med-SA uses a light yet effective adaptation technique instead of fine-tuning the SAM model, incorporating domain-specific medical knowledge into the segmentation model. We also propose Space-Depth Transpose (SD-Trans) to adapt 2D SAM to 3D medical images and Hyper-Prompting Adapter (HyP-Adpt) to achieve prompt-conditioned adaptation. Comprehensive evaluation experiments on 17 medical image segmentation tasks across various modalities demonstrate the superior performance of Med-SA while updating only 2% of the SAM parameters (13M). Our code is released at <span><span>https://github.com/KidsWithTokens/Medical-SAM-Adapter</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103547"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000945","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation due to its impressive capabilities in various segmentation tasks and its prompt-based interface. However, recent studies and individual experiments have shown that SAM underperforms in medical image segmentation due to the lack of medical-specific knowledge. This raises the question of how to enhance SAM’s segmentation capability for medical images. We propose the Medical SAM Adapter (Med-SA), which is one of the first methods to integrate SAM into medical image segmentation. Med-SA uses a light yet effective adaptation technique instead of fine-tuning the SAM model, incorporating domain-specific medical knowledge into the segmentation model. We also propose Space-Depth Transpose (SD-Trans) to adapt 2D SAM to 3D medical images and Hyper-Prompting Adapter (HyP-Adpt) to achieve prompt-conditioned adaptation. Comprehensive evaluation experiments on 17 medical image segmentation tasks across various modalities demonstrate the superior performance of Med-SA while updating only 2% of the SAM parameters (13M). Our code is released at https://github.com/KidsWithTokens/Medical-SAM-Adapter.

Abstract Image

医学SAM适配器:适用于医学图像分割的任意分割模型
由于SAM在各种分割任务中的出色能力和基于提示的界面,SAM模型最近在图像分割领域获得了广泛的应用。然而,最近的研究和个体实验表明,由于缺乏医学专业知识,SAM在医学图像分割方面表现不佳。这就提出了如何增强SAM对医学图像的分割能力的问题。我们提出了医学SAM适配器(Medical SAM Adapter, Med-SA),这是最早将SAM集成到医学图像分割中的方法之一。Med-SA使用一种轻量级但有效的自适应技术,而不是对SAM模型进行微调,将特定领域的医学知识纳入分割模型。我们还提出了空间深度转置(SD-Trans)来使2D SAM适应3D医学图像,并提出了超提示适配器(hypp - adpt)来实现提示条件适应。在17个不同模式的医学图像分割任务中进行的综合评价实验表明,Med-SA在仅更新2%的SAM参数(13M)的情况下具有优越的性能。我们的代码发布在https://github.com/KidsWithTokens/Medical-SAM-Adapter。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信