Yuqi Song , Xie Hu , Xuguo Shi , Yifei Cui , Chao Zhou , Yueren Xu
{"title":"Hydrological proxy derived from InSAR coherence in landslide characterization","authors":"Yuqi Song , Xie Hu , Xuguo Shi , Yifei Cui , Chao Zhou , Yueren Xu","doi":"10.1016/j.rse.2025.114712","DOIUrl":null,"url":null,"abstract":"<div><div>Quantifying landslide susceptibility saves lives, especially in populous areas exposed to wet climates. However, available hydrological data sets such as precipitation and soil moisture are usually from reanalysis with a few to tens of kilometers' coarse resolution compared to the dimensions of landslides. Here we aim to seek substitutes to characterize hydrological features with finer spacing for landslide susceptibility assessment encompassing the tectonically active California. We synergize remote sensing big data and derivatives including topographic characteristics, vegetation index, hydrological variables, land cover, and geological units in different machine learning architectures. Our results illuminate that the interferometric coherence derived from synthetic aperture radar (SAR) can be an effective hydrological proxy, providing enhanced resolution by three orders of magnitude to tens of meters and presenting satisfactory performance, with recalls >85 % and AUCs >90 % in our landslide susceptibility models. The consequent spatially continuous landslide susceptibility map further demonstrates the effectiveness of high-resolution SAR products in compensating for limitations in traditional hydrological data sets. The map and our inferred relationship with the mélange and the distance to faults improve our ability in landslide hazard mitigation.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"322 ","pages":"Article 114712"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725001166","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quantifying landslide susceptibility saves lives, especially in populous areas exposed to wet climates. However, available hydrological data sets such as precipitation and soil moisture are usually from reanalysis with a few to tens of kilometers' coarse resolution compared to the dimensions of landslides. Here we aim to seek substitutes to characterize hydrological features with finer spacing for landslide susceptibility assessment encompassing the tectonically active California. We synergize remote sensing big data and derivatives including topographic characteristics, vegetation index, hydrological variables, land cover, and geological units in different machine learning architectures. Our results illuminate that the interferometric coherence derived from synthetic aperture radar (SAR) can be an effective hydrological proxy, providing enhanced resolution by three orders of magnitude to tens of meters and presenting satisfactory performance, with recalls >85 % and AUCs >90 % in our landslide susceptibility models. The consequent spatially continuous landslide susceptibility map further demonstrates the effectiveness of high-resolution SAR products in compensating for limitations in traditional hydrological data sets. The map and our inferred relationship with the mélange and the distance to faults improve our ability in landslide hazard mitigation.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.