Preface: Advancing deep learning for remote sensing time series data analysis

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Hankui K. Zhang , Gustau Camps-Valls , Shunlin Liang , Devis Tuia , Charlotte Pelletier , Zhe Zhu
{"title":"Preface: Advancing deep learning for remote sensing time series data analysis","authors":"Hankui K. Zhang ,&nbsp;Gustau Camps-Valls ,&nbsp;Shunlin Liang ,&nbsp;Devis Tuia ,&nbsp;Charlotte Pelletier ,&nbsp;Zhe Zhu","doi":"10.1016/j.rse.2025.114711","DOIUrl":null,"url":null,"abstract":"<div><div>This special issue explores the burgeoning field of deep learning for remote sensing time series analysis. The 20 contributed papers showcase diverse applications, including land cover mapping, change detection, atmospheric and biophysical/biochemical parameter retrieval, and disaster monitoring. The articles demonstrate a variety of approaches to address the challenges of irregular time series, such as data compositing, harmonic modeling, and direct ingestion of irregular data using recurrent and attention-based networks (e.g., LSTMs and Transformers). Several studies highlight the potential of integrating physical models with deep learning to improve model trustworthiness and interpretability. Looking ahead, we identify key future directions: the development of globally representative benchmark datasets with time series labels; the creation of readily available, operational time series products and models; the exploration of multi-modal and foundation models tailored to remote sensing time series; and more sophisticated integration of physical knowledge within deep learning frameworks. This collection highlights current progress and fosters innovation in time-aware deep learning for Earth observation.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"322 ","pages":"Article 114711"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725001154","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This special issue explores the burgeoning field of deep learning for remote sensing time series analysis. The 20 contributed papers showcase diverse applications, including land cover mapping, change detection, atmospheric and biophysical/biochemical parameter retrieval, and disaster monitoring. The articles demonstrate a variety of approaches to address the challenges of irregular time series, such as data compositing, harmonic modeling, and direct ingestion of irregular data using recurrent and attention-based networks (e.g., LSTMs and Transformers). Several studies highlight the potential of integrating physical models with deep learning to improve model trustworthiness and interpretability. Looking ahead, we identify key future directions: the development of globally representative benchmark datasets with time series labels; the creation of readily available, operational time series products and models; the exploration of multi-modal and foundation models tailored to remote sensing time series; and more sophisticated integration of physical knowledge within deep learning frameworks. This collection highlights current progress and fosters innovation in time-aware deep learning for Earth observation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信