Hankui K. Zhang , Gustau Camps-Valls , Shunlin Liang , Devis Tuia , Charlotte Pelletier , Zhe Zhu
{"title":"Preface: Advancing deep learning for remote sensing time series data analysis","authors":"Hankui K. Zhang , Gustau Camps-Valls , Shunlin Liang , Devis Tuia , Charlotte Pelletier , Zhe Zhu","doi":"10.1016/j.rse.2025.114711","DOIUrl":null,"url":null,"abstract":"<div><div>This special issue explores the burgeoning field of deep learning for remote sensing time series analysis. The 20 contributed papers showcase diverse applications, including land cover mapping, change detection, atmospheric and biophysical/biochemical parameter retrieval, and disaster monitoring. The articles demonstrate a variety of approaches to address the challenges of irregular time series, such as data compositing, harmonic modeling, and direct ingestion of irregular data using recurrent and attention-based networks (e.g., LSTMs and Transformers). Several studies highlight the potential of integrating physical models with deep learning to improve model trustworthiness and interpretability. Looking ahead, we identify key future directions: the development of globally representative benchmark datasets with time series labels; the creation of readily available, operational time series products and models; the exploration of multi-modal and foundation models tailored to remote sensing time series; and more sophisticated integration of physical knowledge within deep learning frameworks. This collection highlights current progress and fosters innovation in time-aware deep learning for Earth observation.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"322 ","pages":"Article 114711"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725001154","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This special issue explores the burgeoning field of deep learning for remote sensing time series analysis. The 20 contributed papers showcase diverse applications, including land cover mapping, change detection, atmospheric and biophysical/biochemical parameter retrieval, and disaster monitoring. The articles demonstrate a variety of approaches to address the challenges of irregular time series, such as data compositing, harmonic modeling, and direct ingestion of irregular data using recurrent and attention-based networks (e.g., LSTMs and Transformers). Several studies highlight the potential of integrating physical models with deep learning to improve model trustworthiness and interpretability. Looking ahead, we identify key future directions: the development of globally representative benchmark datasets with time series labels; the creation of readily available, operational time series products and models; the exploration of multi-modal and foundation models tailored to remote sensing time series; and more sophisticated integration of physical knowledge within deep learning frameworks. This collection highlights current progress and fosters innovation in time-aware deep learning for Earth observation.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.