{"title":"Reverse stealth construction and its thermodynamic imprints","authors":"C. Erices, L. Guajardo and K. Lara","doi":"10.1088/1475-7516/2025/03/051","DOIUrl":null,"url":null,"abstract":"We study a class of solutions within the context of modified gravity theories, characterized by a non-trivial field that does not generate any back-reaction on the metric. These stealth configurations are effectively defined by the stealth conditions, which correspond to a vanishing stress-energy tensor. In this work, we introduce a novel approach to constructing this class of solutions. In contrast to the standard procedure, the starting point requires satisfying the stealth conditions for a given ansatz independently of the gravitational dynamics. This approach simultaneously determines the non-trivial field and the geometries capable of supporting it as a stealth configuration. Consequently, a gravity model can accommodate a stealth field only if its vacuum solution falls within the geometries permissible under stealth conditions. By applying this reverse procedure in the non-minimal Rϕ2 coupling, we recover all previously known stealth configurations and present new solutions. Although it seems intuitive to assume that this “gravitationally undetectable” scalar field leaves no physical traces, it remarkably reveals thermodynamic imprints, as its presence screens the black hole mass and modifies the entropy according to the first law.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"27 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/051","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a class of solutions within the context of modified gravity theories, characterized by a non-trivial field that does not generate any back-reaction on the metric. These stealth configurations are effectively defined by the stealth conditions, which correspond to a vanishing stress-energy tensor. In this work, we introduce a novel approach to constructing this class of solutions. In contrast to the standard procedure, the starting point requires satisfying the stealth conditions for a given ansatz independently of the gravitational dynamics. This approach simultaneously determines the non-trivial field and the geometries capable of supporting it as a stealth configuration. Consequently, a gravity model can accommodate a stealth field only if its vacuum solution falls within the geometries permissible under stealth conditions. By applying this reverse procedure in the non-minimal Rϕ2 coupling, we recover all previously known stealth configurations and present new solutions. Although it seems intuitive to assume that this “gravitationally undetectable” scalar field leaves no physical traces, it remarkably reveals thermodynamic imprints, as its presence screens the black hole mass and modifies the entropy according to the first law.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.