Sara Rufrano Aliberti, Gaetano Lambiase and Tanmay Kumar Poddar
{"title":"Limits on dark matter, ultralight scalars, and cosmic neutrinos with gyroscope spin and precision clocks","authors":"Sara Rufrano Aliberti, Gaetano Lambiase and Tanmay Kumar Poddar","doi":"10.1088/1475-7516/2025/03/049","DOIUrl":null,"url":null,"abstract":"Dark matter (DM) within the solar system induces deviations in the geodetic drift of a gyroscope spin due to its gravitational interaction. Considering a constant DM density as a minimal scenario, we constrain DM overdensity within the Gravity Probe B (GP-B) orbit around the Earth and for Earth's and Neptune's orbits around the Sun. The presence of electrons in gravitating sources and test objects introduces an electrophilic scalar-mediated Yukawa potential, which can be probed from the measurement of geodetic drift as well as using terrestrial and space-based precision clocks. We derive projected DM overdensity (η) limits from Sagnac time measurements using onboard satellite clocks, highlighting their dependence on the source mass and orbital radius. The strongest sensitivity, η ∼ 4.45 × 103, is achieved at Neptune's orbit (∼ 30 AU), exceeding existing constraints. Correspondingly, the cosmic neutrino overdensity is ξ ∼ 5.34 × 1010, surpassing results from KATRIN and cosmic ray studies. The strongest sensitivity on the electrophilic scalar coupling, g ∼ 7.09 × 10-24, is achieved for a scalar mass mφ ≲ 1.32 × 10-18 eV. This result, obtained from the projected precision clock studies probing non-gravitational potentials, is competitive with the leading bounds from fifth-force searches. These precision measurements offer a robust framework for testing gravity at solar system scales and probing DM in scenarios inaccessible to direct detection experiments.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"56 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/049","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dark matter (DM) within the solar system induces deviations in the geodetic drift of a gyroscope spin due to its gravitational interaction. Considering a constant DM density as a minimal scenario, we constrain DM overdensity within the Gravity Probe B (GP-B) orbit around the Earth and for Earth's and Neptune's orbits around the Sun. The presence of electrons in gravitating sources and test objects introduces an electrophilic scalar-mediated Yukawa potential, which can be probed from the measurement of geodetic drift as well as using terrestrial and space-based precision clocks. We derive projected DM overdensity (η) limits from Sagnac time measurements using onboard satellite clocks, highlighting their dependence on the source mass and orbital radius. The strongest sensitivity, η ∼ 4.45 × 103, is achieved at Neptune's orbit (∼ 30 AU), exceeding existing constraints. Correspondingly, the cosmic neutrino overdensity is ξ ∼ 5.34 × 1010, surpassing results from KATRIN and cosmic ray studies. The strongest sensitivity on the electrophilic scalar coupling, g ∼ 7.09 × 10-24, is achieved for a scalar mass mφ ≲ 1.32 × 10-18 eV. This result, obtained from the projected precision clock studies probing non-gravitational potentials, is competitive with the leading bounds from fifth-force searches. These precision measurements offer a robust framework for testing gravity at solar system scales and probing DM in scenarios inaccessible to direct detection experiments.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.