{"title":"Exendin-4 improves cerebral ischemia by relaxing microvessels, rapidly increasing cerebral blood flow after reperfusion","authors":"Yujie Chen, Lei Wang, Yutong Zhou, Yuguang Wang, Wei Qin, Mingxiao Wang, Bo Liu, Qian Tian, Huisen Xu, Hui Shen, Chen Zheng","doi":"10.1007/s00395-025-01096-y","DOIUrl":null,"url":null,"abstract":"<p>Intravenous thrombolysis remains the cornerstone for restoring cerebral reperfusion post-stroke. Despite recombinant tissue plasminogen activator (rtPA) achieving arterial reperfusion within 6 h, persistent microcirculatory blood flow reduction often hampers recovery. Exendin-4, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has demonstrated potential for improving stroke outcomes, though its mechanisms remain partially unclear. This study investigated the role of Exendin-4 in restoring microcirculatory blood flow post-stroke. Using ischemic stroke models in 8-week-old male C57BL/6j mice, induced by transient middle cerebral artery occlusion or bilateral common carotid artery ligation, Exendin-4 (150 μg/kg) was administered intravenously. Infarct size and neurological deficits were evaluated using TTC staining and neurological severity scores. Real-time cerebral blood flow (CBF) and microvascular changes were measured with laser speckle imaging and two-photon microscopy. Mechanistic studies employed immunofluorescence and infrared differential interference contrast microscopy. Our findings demonstrated that Exendin-4 significantly reduced infarct size and improved neurological outcomes, independent of blood glucose levels. Immunofluorescence revealed GLP-1 receptor expression in arteriolar smooth muscle cells, endothelial cells, and pericytes. Exendin-4 enhanced microvascular blood flow via vasodilation, confirmed through real-time imaging. In vitro, Exendin-4 relaxed pre-constricted vessels, an effect that was abolished by eNOS and adenylate cyclase (AC) inhibitors. However, guanylate cyclase (GC) inhibition failed to block Exendin-4-induced vasodilation, suggesting a non-cGMP-dependent NO pathway may be involved. Furthermore, prostaglandin E2 (PGE2) signaling via EP4 receptors was identified as a critical contributor to Exendin-4’s vasodilatory effect, highlighting the involvement of multiple signaling pathways. These findings suggest that Exendin-4 preserves cerebral microcirculation through a multifaceted mechanism involving GLP-1R-mediated AC–cAMP signaling, PGE2–EP4 signaling, and a non-cGMP-dependent NO pathway. This study positions GLP-1 receptor agonists as promising therapeutic candidates for enhancing cerebral microcirculation and improving outcomes following stroke.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"70 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-025-01096-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Intravenous thrombolysis remains the cornerstone for restoring cerebral reperfusion post-stroke. Despite recombinant tissue plasminogen activator (rtPA) achieving arterial reperfusion within 6 h, persistent microcirculatory blood flow reduction often hampers recovery. Exendin-4, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has demonstrated potential for improving stroke outcomes, though its mechanisms remain partially unclear. This study investigated the role of Exendin-4 in restoring microcirculatory blood flow post-stroke. Using ischemic stroke models in 8-week-old male C57BL/6j mice, induced by transient middle cerebral artery occlusion or bilateral common carotid artery ligation, Exendin-4 (150 μg/kg) was administered intravenously. Infarct size and neurological deficits were evaluated using TTC staining and neurological severity scores. Real-time cerebral blood flow (CBF) and microvascular changes were measured with laser speckle imaging and two-photon microscopy. Mechanistic studies employed immunofluorescence and infrared differential interference contrast microscopy. Our findings demonstrated that Exendin-4 significantly reduced infarct size and improved neurological outcomes, independent of blood glucose levels. Immunofluorescence revealed GLP-1 receptor expression in arteriolar smooth muscle cells, endothelial cells, and pericytes. Exendin-4 enhanced microvascular blood flow via vasodilation, confirmed through real-time imaging. In vitro, Exendin-4 relaxed pre-constricted vessels, an effect that was abolished by eNOS and adenylate cyclase (AC) inhibitors. However, guanylate cyclase (GC) inhibition failed to block Exendin-4-induced vasodilation, suggesting a non-cGMP-dependent NO pathway may be involved. Furthermore, prostaglandin E2 (PGE2) signaling via EP4 receptors was identified as a critical contributor to Exendin-4’s vasodilatory effect, highlighting the involvement of multiple signaling pathways. These findings suggest that Exendin-4 preserves cerebral microcirculation through a multifaceted mechanism involving GLP-1R-mediated AC–cAMP signaling, PGE2–EP4 signaling, and a non-cGMP-dependent NO pathway. This study positions GLP-1 receptor agonists as promising therapeutic candidates for enhancing cerebral microcirculation and improving outcomes following stroke.
期刊介绍:
Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards.
Basic Research in Cardiology regularly receives articles from the fields of
- Molecular and Cellular Biology
- Biochemistry
- Biophysics
- Pharmacology
- Physiology and Pathology
- Clinical Cardiology