{"title":"Dissecting the genetic architecture of key agronomic traits in lettuce using a MAGIC population","authors":"Hongyun Chen, Jiongjiong Chen, Ruifang Zhai, Dean Lavelle, Yue Jia, Qiwei Tang, Ting Zhu, Menglu Wang, Zedong Geng, Jianzhong Zhu, Hui Feng, Junru An, Jiansheng Liu, Weibo Li, Shenzhao Deng, Wandi Wang, Weiyi Zhang, Xiaoyan Zhang, Guangbao Luo, Xin Wang, Sunil Kumar Sahu, Huan Liu, Richard Michelmore, Wanneng Yang, Tong Wei, Hanhui Kuang","doi":"10.1186/s13059-025-03541-6","DOIUrl":null,"url":null,"abstract":"Lettuce is a globally important leafy vegetable that exhibits diverse horticultural types and strong population structure, which complicates genetic analyses. To address this challenge, we develop the first multi-parent, advanced generation inter-cross (MAGIC) population for lettuce using 16 diverse founder lines. Whole-genome sequencing of the 16 founder lines and 381 inbred progeny reveal minimal population structure, enabling informative genome-wide association studies (GWAS). GWAS of the lettuce MAGIC population identifies numerous loci associated with key agricultural traits, including 51 for flowering time, 11 for leaf color, and 5 for leaf shape. Notably, loss-of-function mutations in the LsphyB and LsphyC genes, encoding phytochromes B and C, dramatically delay flowering in lettuce, which is in striking contrast to many other plant species. This unexpected finding highlights the unique genetic architecture controlling flowering time in lettuce. The wild-type LsTCP4 gene plays critical roles in leaf flatness and its expression level is negatively correlated with leaf curvature. Additionally, a novel zinc finger protein (ZFP) gene is required for the development of lobed leaves; a point mutation leads to its loss of function and consequently converted lobed leaves to non-lobed leaves, as exhibited by most lettuce cultivars. The MAGIC population’s lack of structure and high mapping resolution enables the efficient dissection of complex traits. The identified loci and candidate genes provide significant genetic resources for improving agronomic performance and leaf quality in lettuce.\n","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"34 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03541-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lettuce is a globally important leafy vegetable that exhibits diverse horticultural types and strong population structure, which complicates genetic analyses. To address this challenge, we develop the first multi-parent, advanced generation inter-cross (MAGIC) population for lettuce using 16 diverse founder lines. Whole-genome sequencing of the 16 founder lines and 381 inbred progeny reveal minimal population structure, enabling informative genome-wide association studies (GWAS). GWAS of the lettuce MAGIC population identifies numerous loci associated with key agricultural traits, including 51 for flowering time, 11 for leaf color, and 5 for leaf shape. Notably, loss-of-function mutations in the LsphyB and LsphyC genes, encoding phytochromes B and C, dramatically delay flowering in lettuce, which is in striking contrast to many other plant species. This unexpected finding highlights the unique genetic architecture controlling flowering time in lettuce. The wild-type LsTCP4 gene plays critical roles in leaf flatness and its expression level is negatively correlated with leaf curvature. Additionally, a novel zinc finger protein (ZFP) gene is required for the development of lobed leaves; a point mutation leads to its loss of function and consequently converted lobed leaves to non-lobed leaves, as exhibited by most lettuce cultivars. The MAGIC population’s lack of structure and high mapping resolution enables the efficient dissection of complex traits. The identified loci and candidate genes provide significant genetic resources for improving agronomic performance and leaf quality in lettuce.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.