Temperature influences outcomes of an environmentally acquired symbiosis.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Patrick T Stillson, Kaisy Martinez, Johnathan Adamson, Arshya Tehrani, Alison Ravenscraft
{"title":"Temperature influences outcomes of an environmentally acquired symbiosis.","authors":"Patrick T Stillson, Kaisy Martinez, Johnathan Adamson, Arshya Tehrani, Alison Ravenscraft","doi":"10.1093/ismejo/wraf056","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial symbioses are essential for many animals, but their outcomes are often context dependent. For example, rising temperatures can disrupt symbioses by eliminating thermally sensitive symbionts. The temperature tolerance of a symbiont may therefore limit the temperature range of its host, but switching to a more thermally tolerant partner could expand this range. Eastern leaf footed bugs (Leptoglossus phyllopus) depend on symbiotic Caballeronia bacteria which they must acquire from the environment early in development. Could this result in intergenerational partner switching that improves host outcomes under changing conditions? As a first step towards answering this question, we tested the hypothesis that host outcomes in this symbiosis vary among symbiont strains in a temperature-dependent manner. Nymphs were provided with one of six Caballeronia strains with varying thermal optima and reared at temperatures from 24 - 40°C. We observed temperature- and strain-dependent tradeoffs in host outcomes, with different strains conferring improved host weight, development time, and survival at cooler versus warmer temperatures. Differences in host outcomes were most pronounced at high temperatures, with some strains imposing severe costs. However, Caballeronia's in vitro thermal optima did not predict in vivo outcomes. Regardless, strain - and temperature - dependent outcomes suggest that environmental symbiont acquisition could mitigate the effects of thermal stress on host populations. It is often assumed that vertical transmission of a beneficial symbiont from parent to offspring is the optimal strategy, but our results suggest that environmental acquisition could offer unique benefits under changing conditions.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf056","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial symbioses are essential for many animals, but their outcomes are often context dependent. For example, rising temperatures can disrupt symbioses by eliminating thermally sensitive symbionts. The temperature tolerance of a symbiont may therefore limit the temperature range of its host, but switching to a more thermally tolerant partner could expand this range. Eastern leaf footed bugs (Leptoglossus phyllopus) depend on symbiotic Caballeronia bacteria which they must acquire from the environment early in development. Could this result in intergenerational partner switching that improves host outcomes under changing conditions? As a first step towards answering this question, we tested the hypothesis that host outcomes in this symbiosis vary among symbiont strains in a temperature-dependent manner. Nymphs were provided with one of six Caballeronia strains with varying thermal optima and reared at temperatures from 24 - 40°C. We observed temperature- and strain-dependent tradeoffs in host outcomes, with different strains conferring improved host weight, development time, and survival at cooler versus warmer temperatures. Differences in host outcomes were most pronounced at high temperatures, with some strains imposing severe costs. However, Caballeronia's in vitro thermal optima did not predict in vivo outcomes. Regardless, strain - and temperature - dependent outcomes suggest that environmental symbiont acquisition could mitigate the effects of thermal stress on host populations. It is often assumed that vertical transmission of a beneficial symbiont from parent to offspring is the optimal strategy, but our results suggest that environmental acquisition could offer unique benefits under changing conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信