Classification of auditory ERPs for ADHD detection in children.

Q3 Engineering
I Mercado-Aguirre, K Gutiérrez-Ruiz, S H Contreras-Ortiz
{"title":"Classification of auditory ERPs for ADHD detection in children.","authors":"I Mercado-Aguirre, K Gutiérrez-Ruiz, S H Contreras-Ortiz","doi":"10.1080/03091902.2025.2477506","DOIUrl":null,"url":null,"abstract":"<p><p>Attention deficit hyperactivity disorder (ADHD) is one of the children's most common neurodevelopmental conditions. ADHD diagnosis is based on evaluating inattention, hyperactivity, and impulsivity symptoms that interfere with or reduce daily functioning. Although electroencephalography (EEG) tests are used for ADHD diagnosis, they are generally considered a complement to clinical evaluation. This paper proposes an approach to classify EEG records of children with ADHD and control cases. We identified and extracted relevant features from EEG signals of 47 children (22 diagnosed with ADHD and 25 controls) and evaluated machine learning techniques for classification. We used the 2-tone oddball paradigm to elicit the subjects' auditory event-related potentials (ERP), and we recorded EEG signals with a portable headset for approximately five minutes. In the feature extraction stage, we included measures from cognitive evoked potentials, frequency bands power, chaos quantification, and bispectral analysis, in addition to the age of the children and the number of high-pitched tones the children counted during the test. The SVM and Trees algorithms obtained the best performance for 86.36% accuracy and 95.45% sensitivity. These findings demonstrate the potential of portable EEG-based systems to complement standard clinical assessments, offering an objective, time-efficient, and accessible approach to support early ADHD diagnosis. Achieving high accuracy and sensitivity in classification is critical to reducing the risk of misdiagnosis and ensuring timely intervention, ultimately improving patient outcomes.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2477506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Attention deficit hyperactivity disorder (ADHD) is one of the children's most common neurodevelopmental conditions. ADHD diagnosis is based on evaluating inattention, hyperactivity, and impulsivity symptoms that interfere with or reduce daily functioning. Although electroencephalography (EEG) tests are used for ADHD diagnosis, they are generally considered a complement to clinical evaluation. This paper proposes an approach to classify EEG records of children with ADHD and control cases. We identified and extracted relevant features from EEG signals of 47 children (22 diagnosed with ADHD and 25 controls) and evaluated machine learning techniques for classification. We used the 2-tone oddball paradigm to elicit the subjects' auditory event-related potentials (ERP), and we recorded EEG signals with a portable headset for approximately five minutes. In the feature extraction stage, we included measures from cognitive evoked potentials, frequency bands power, chaos quantification, and bispectral analysis, in addition to the age of the children and the number of high-pitched tones the children counted during the test. The SVM and Trees algorithms obtained the best performance for 86.36% accuracy and 95.45% sensitivity. These findings demonstrate the potential of portable EEG-based systems to complement standard clinical assessments, offering an objective, time-efficient, and accessible approach to support early ADHD diagnosis. Achieving high accuracy and sensitivity in classification is critical to reducing the risk of misdiagnosis and ensuring timely intervention, ultimately improving patient outcomes.

注意缺陷多动障碍(ADHD)是儿童最常见的神经发育疾病之一。多动症的诊断基于对干扰或降低日常功能的注意力不集中、多动和冲动症状的评估。虽然脑电图(EEG)测试可用于诊断多动症,但通常被视为临床评估的补充。本文提出了一种对多动症儿童和对照病例的脑电图记录进行分类的方法。我们从 47 名儿童(22 名确诊为多动症,25 名为对照组)的脑电图信号中识别并提取了相关特征,并评估了用于分类的机器学习技术。我们使用双音奇球范式来激发受试者的听觉事件相关电位(ERP),并用便携式耳机记录了大约五分钟的脑电信号。在特征提取阶段,我们将认知诱发电位、频带功率、混沌量化和双谱分析的测量值,以及儿童的年龄和儿童在测试过程中数出的高音音调的数量纳入其中。SVM 算法和树算法的准确率为 86.36%,灵敏度为 95.45%,表现最佳。这些研究结果表明,基于脑电图的便携式系统具有补充标准临床评估的潜力,可提供一种客观、省时、方便的方法来支持多动症的早期诊断。要降低误诊风险并确保及时干预,最终改善患者的预后,实现高准确度和高灵敏度的分类至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信