Jihan Hussein , Mona A. El-Bana , Rehab A. Mohamed , Enayat Omara , Dalia Medhat
{"title":"Ceramide and DNA damage in liver fibrosis: Exploring the implications of eicosapentaenoic acid encapsulation in cellulose nanocrystals","authors":"Jihan Hussein , Mona A. El-Bana , Rehab A. Mohamed , Enayat Omara , Dalia Medhat","doi":"10.1016/j.prostaglandins.2025.106985","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramide plays a crucial role in promoting liver fibrosis by inducing apoptosis and inflammation in hepatocytes. Oxidative stress accelerates fibrosis by elevating levels of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), an indicator for the damage of DNA. We aimed to evaluate the efficacy of eicosapentaenoic acid encapsulated in cellulose nanocrystals (EPA-CNC) in inhibiting ceramide accumulation and reducing urinary 8-OHdG levels, thus providing protective effects against the progression of liver fibrosis.</div><div>In this study, twenty-four adult male Wistar albino rats were allocated into a negative control group, a group with liver fibrosis induced by diethylnitrosamine (DEN), and a group with DEN-induced liver fibrosis treated simultaneously with EPA-CNC. Key parameters assessed included liver paraoxonase-1 (PON-1), plasma interleukin-6 (IL-6), plasma ceramide, liver hydroxyproline (Hyp) content, and urinary 8-OHdG.</div><div>DEN-induced liver fibrosis led to a significant increase in inflammatory markers, including ceramide, IL-6, and notably urinary 8-OHdG. This was accompanied by a decrease in PON-1 activity and increased collagen deposition in liver tissues (Hyp content). Histopathological analysis revealed a substantial loss of liver architecture, with inflammation and fibrosis surrounding necrotic areas.</div><div>In contrast, treatment with encapsulated EPA-CNC resulted in a significant decrease in plasma ceramide, IL-6, liver Hyp content, and urinary 8-OHdG levels, along with an improvement in liver PON-1 activity. Histopathological findings showed nearly normal liver architecture.</div><div>In conclusion, increased levels of ceramide and urinary 8-OHdG could serve as indicators of ongoing hepatocellular damage due to their positive correlations with fibrotic markers. Encapsulated EPA-CNC may offer a promising approach for halting oxidative stress and inflammation in liver fibrosis.</div></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"178 ","pages":"Article 106985"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins & other lipid mediators","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1098882325000383","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramide plays a crucial role in promoting liver fibrosis by inducing apoptosis and inflammation in hepatocytes. Oxidative stress accelerates fibrosis by elevating levels of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), an indicator for the damage of DNA. We aimed to evaluate the efficacy of eicosapentaenoic acid encapsulated in cellulose nanocrystals (EPA-CNC) in inhibiting ceramide accumulation and reducing urinary 8-OHdG levels, thus providing protective effects against the progression of liver fibrosis.
In this study, twenty-four adult male Wistar albino rats were allocated into a negative control group, a group with liver fibrosis induced by diethylnitrosamine (DEN), and a group with DEN-induced liver fibrosis treated simultaneously with EPA-CNC. Key parameters assessed included liver paraoxonase-1 (PON-1), plasma interleukin-6 (IL-6), plasma ceramide, liver hydroxyproline (Hyp) content, and urinary 8-OHdG.
DEN-induced liver fibrosis led to a significant increase in inflammatory markers, including ceramide, IL-6, and notably urinary 8-OHdG. This was accompanied by a decrease in PON-1 activity and increased collagen deposition in liver tissues (Hyp content). Histopathological analysis revealed a substantial loss of liver architecture, with inflammation and fibrosis surrounding necrotic areas.
In contrast, treatment with encapsulated EPA-CNC resulted in a significant decrease in plasma ceramide, IL-6, liver Hyp content, and urinary 8-OHdG levels, along with an improvement in liver PON-1 activity. Histopathological findings showed nearly normal liver architecture.
In conclusion, increased levels of ceramide and urinary 8-OHdG could serve as indicators of ongoing hepatocellular damage due to their positive correlations with fibrotic markers. Encapsulated EPA-CNC may offer a promising approach for halting oxidative stress and inflammation in liver fibrosis.
期刊介绍:
Prostaglandins & Other Lipid Mediators is the original and foremost journal dealing with prostaglandins and related lipid mediator substances. It includes basic and clinical studies related to the pharmacology, physiology, pathology and biochemistry of lipid mediators.
Prostaglandins & Other Lipid Mediators invites reports of original research, mini-reviews, reviews, and methods articles in the basic and clinical aspects of all areas of lipid mediator research: cell biology, developmental biology, genetics, molecular biology, chemistry, biochemistry, physiology, pharmacology, endocrinology, biology, the medical sciences, and epidemiology.
Prostaglandins & Other Lipid Mediators also accepts proposals for special issue topics. The Editors will make every effort to advise authors of the decision on the submitted manuscript within 3-4 weeks of receipt.