Christian I Rude, Jordan N Smith, Ricky P Scott, Katherine J Schultz, Kim A Anderson, Robyn L Tanguay
{"title":"A Mixture Parameterized Biologically Based Dosimetry Model to Predict Body Burdens of PAHs in Developmental Zebrafish Toxicity Assays.","authors":"Christian I Rude, Jordan N Smith, Ricky P Scott, Katherine J Schultz, Kim A Anderson, Robyn L Tanguay","doi":"10.1093/toxsci/kfaf039","DOIUrl":null,"url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental toxicants found ubiquitously as complex mixtures in human impacted environments. Developmental zebrafish exposures have been used widely to study PAH toxicity, but most studies report nominal exposure concentrations. Nominal exposure concentrations can be unreliable dose metrics due to differences in toxicant bioavailability resulting from disparate exposure methodologies and chemical properties. Toxicokinetic modeling can predict toxicant tissue doses to facilitate comparison between exposures of different chemicals, methodologies, and biological models. We parameterize a biologically based dosimetry model for developmental zebrafish toxicity assays for 9 PAHs. The model was optimized with measurements from media, tissue, and plastic plate walls throughout a static developmental exposure to a mixture of ten PAHs of high abundance within the Portland Harbor Superfund Site. Plate binding, volatilization, zebrafish permeability, and tissue-media partitioning coefficients vary widely between PAHs. Model predictions accounted for 83% and 54% of 48 hpf body burdens within a factor of 2 resulting from exposures to mixtures and individual PAHs respectively. Accounting for solubility significantly improves model performance. Competition for active sites in metabolizing enzymes may change biotransformation kinetics between individual PAH and mixture exposures. Area under the curve estimations of concentrations in zebrafish resulted in altered hazard rankings from nominal exposure concentrations. Future work will be oriented to generalizing the model to other PAHs. This PAH dosimetry model improves the interpretability of developmental zebrafish toxicity assays by providing time resolved body burdens from nominal exposure concentrations.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental toxicants found ubiquitously as complex mixtures in human impacted environments. Developmental zebrafish exposures have been used widely to study PAH toxicity, but most studies report nominal exposure concentrations. Nominal exposure concentrations can be unreliable dose metrics due to differences in toxicant bioavailability resulting from disparate exposure methodologies and chemical properties. Toxicokinetic modeling can predict toxicant tissue doses to facilitate comparison between exposures of different chemicals, methodologies, and biological models. We parameterize a biologically based dosimetry model for developmental zebrafish toxicity assays for 9 PAHs. The model was optimized with measurements from media, tissue, and plastic plate walls throughout a static developmental exposure to a mixture of ten PAHs of high abundance within the Portland Harbor Superfund Site. Plate binding, volatilization, zebrafish permeability, and tissue-media partitioning coefficients vary widely between PAHs. Model predictions accounted for 83% and 54% of 48 hpf body burdens within a factor of 2 resulting from exposures to mixtures and individual PAHs respectively. Accounting for solubility significantly improves model performance. Competition for active sites in metabolizing enzymes may change biotransformation kinetics between individual PAH and mixture exposures. Area under the curve estimations of concentrations in zebrafish resulted in altered hazard rankings from nominal exposure concentrations. Future work will be oriented to generalizing the model to other PAHs. This PAH dosimetry model improves the interpretability of developmental zebrafish toxicity assays by providing time resolved body burdens from nominal exposure concentrations.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.