Transcriptionally distinct malignant neuroblastoma populations show selective response to adavosertib treatment.

IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY
Chiao-Hui Hsieh, Yi-Xuan Chen, Tzu-Yang Tseng, Albert Li, Hsuan-Cheng Huang, Hsueh-Fen Juan
{"title":"Transcriptionally distinct malignant neuroblastoma populations show selective response to adavosertib treatment.","authors":"Chiao-Hui Hsieh, Yi-Xuan Chen, Tzu-Yang Tseng, Albert Li, Hsuan-Cheng Huang, Hsueh-Fen Juan","doi":"10.1016/j.neurot.2025.e00575","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastoma is an aggressive childhood cancer that arises from the sympathetic nervous system. Despite advances in treatment, high-risk neuroblastoma remains difficult to manage due to its heterogeneous nature and frequent development of drug resistance. Drug repurposing guided by single-cell analysis presents a promising strategy for identifying new therapeutic options. Here, we aim to characterize high-risk neuroblastoma subpopulations and identify effective repurposed drugs for targeted treatment. We performed single-cell transcriptomic analysis of neuroblastoma samples, integrating bulk RNA-seq data deconvolution with clinical outcomes to define distinct malignant cell states. Using a systematic drug repurposing pipeline, we identified and validated potential therapeutic agents targeting specific high-risk neuroblastoma subpopulations. Single-cell analysis revealed 17 transcriptionally distinct neuroblastoma subpopulations. Survival analysis identified a highly aggressive subpopulation characterized by elevated UBE2C/PTTG1 expression and poor patient outcomes, distinct from a less aggressive subpopulation with favorable prognosis. Drug repurposing screening identified Adavosertib as particularly effective against the aggressive subpopulation, validated using SK-N-DZ cells as a representative model. Mechanistically, Adavosertib suppressed cell proliferation through AKT/mTOR pathway disruption, induced G2/M phase cell cycle arrest, and promoted apoptosis. Further analysis revealed UBE2C and PTTG1 as key molecular drivers of drug resistance, where their overexpression enhanced proliferation, Adavosertib resistance, and cell migration. This study establishes a single-cell-based drug repurposing strategy for high-risk neuroblastoma treatment. Our approach successfully identified Adavosertib as a promising repurposed therapeutic agent for targeting specific high-risk neuroblastoma subpopulations, providing a framework for developing more effective personalized treatment strategies.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00575"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2025.e00575","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroblastoma is an aggressive childhood cancer that arises from the sympathetic nervous system. Despite advances in treatment, high-risk neuroblastoma remains difficult to manage due to its heterogeneous nature and frequent development of drug resistance. Drug repurposing guided by single-cell analysis presents a promising strategy for identifying new therapeutic options. Here, we aim to characterize high-risk neuroblastoma subpopulations and identify effective repurposed drugs for targeted treatment. We performed single-cell transcriptomic analysis of neuroblastoma samples, integrating bulk RNA-seq data deconvolution with clinical outcomes to define distinct malignant cell states. Using a systematic drug repurposing pipeline, we identified and validated potential therapeutic agents targeting specific high-risk neuroblastoma subpopulations. Single-cell analysis revealed 17 transcriptionally distinct neuroblastoma subpopulations. Survival analysis identified a highly aggressive subpopulation characterized by elevated UBE2C/PTTG1 expression and poor patient outcomes, distinct from a less aggressive subpopulation with favorable prognosis. Drug repurposing screening identified Adavosertib as particularly effective against the aggressive subpopulation, validated using SK-N-DZ cells as a representative model. Mechanistically, Adavosertib suppressed cell proliferation through AKT/mTOR pathway disruption, induced G2/M phase cell cycle arrest, and promoted apoptosis. Further analysis revealed UBE2C and PTTG1 as key molecular drivers of drug resistance, where their overexpression enhanced proliferation, Adavosertib resistance, and cell migration. This study establishes a single-cell-based drug repurposing strategy for high-risk neuroblastoma treatment. Our approach successfully identified Adavosertib as a promising repurposed therapeutic agent for targeting specific high-risk neuroblastoma subpopulations, providing a framework for developing more effective personalized treatment strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotherapeutics
Neurotherapeutics 医学-神经科学
CiteScore
11.00
自引率
3.50%
发文量
154
审稿时长
6-12 weeks
期刊介绍: Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities. The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field. Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信