Yi Xu, Saixuan Li, Yiran Xu, Xiaoqin Sun, Yuqing Wei, Yuejun Wang, Shuang Li, Yongqi Ji, Keyi Hu, Yuxia Xu, Cuiqing Zhu, Bin Lu, Dandan Wang
{"title":"Visualize neuronal membrane cholesterol with split- fluorescent protein tagged YDQA sensor.","authors":"Yi Xu, Saixuan Li, Yiran Xu, Xiaoqin Sun, Yuqing Wei, Yuejun Wang, Shuang Li, Yongqi Ji, Keyi Hu, Yuxia Xu, Cuiqing Zhu, Bin Lu, Dandan Wang","doi":"10.1016/j.jlr.2025.100781","DOIUrl":null,"url":null,"abstract":"<p><p>Cholesterol is a major component of the cellular plasma membrane (PM), and its homeostasis is essential for brain health. Dysregulated cholesterol homeostasis has been strongly implicated in the pathogenesis of various neurological disorders, including Alzheimer's disease (AD). However, in vivo visualization of cholesterol has remained challenging, hindering a comprehensive understanding of AD pathology. In this study, we generated a new sensor combining the split-fluorescent protein tags with YDQA, a derivate of cholesterol-dependent cytolysin PFO. Through a series of validations in cell and C. elegans models, we demonstrate that the new sensor (name as sfPMcho) efficiently detects neuronal PM cholesterol. We further applied this sensor in 5X FAD and APOE KO mice models and revealed the cholesterol changes within neurons. PM cholesterol became sparse and locally aggregated in neuron bodies but significantly accumulated in nerve fibers. Collectively, this study provides a new tool for detecting neuronal PM cholesterol in vivo and uncovers cholesterol abnormalities in AD-related pathology at the cellular level. Further development based on this sensor or the similar strategy are to be expected.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100781"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100781","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cholesterol is a major component of the cellular plasma membrane (PM), and its homeostasis is essential for brain health. Dysregulated cholesterol homeostasis has been strongly implicated in the pathogenesis of various neurological disorders, including Alzheimer's disease (AD). However, in vivo visualization of cholesterol has remained challenging, hindering a comprehensive understanding of AD pathology. In this study, we generated a new sensor combining the split-fluorescent protein tags with YDQA, a derivate of cholesterol-dependent cytolysin PFO. Through a series of validations in cell and C. elegans models, we demonstrate that the new sensor (name as sfPMcho) efficiently detects neuronal PM cholesterol. We further applied this sensor in 5X FAD and APOE KO mice models and revealed the cholesterol changes within neurons. PM cholesterol became sparse and locally aggregated in neuron bodies but significantly accumulated in nerve fibers. Collectively, this study provides a new tool for detecting neuronal PM cholesterol in vivo and uncovers cholesterol abnormalities in AD-related pathology at the cellular level. Further development based on this sensor or the similar strategy are to be expected.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.