CaLMPhosKAN: Prediction of General Phosphorylation Sites in Proteins via Fusion of Codon Aware Embeddings with Amino Acid Aware Embeddings and Wavelet-based Kolmogorov-Arnold Network.

Pawel Pratyush, Callen Carrier, Suresh Pokharel, Hamid D Ismail, Meenal Chaudhari, Dukka B K C
{"title":"CaLMPhosKAN: Prediction of General Phosphorylation Sites in Proteins via Fusion of Codon Aware Embeddings with Amino Acid Aware Embeddings and Wavelet-based Kolmogorov-Arnold Network.","authors":"Pawel Pratyush, Callen Carrier, Suresh Pokharel, Hamid D Ismail, Meenal Chaudhari, Dukka B K C","doi":"10.1093/bioinformatics/btaf124","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The mapping from codon to amino acid is surjective due to codon degeneracy, suggesting that codon space might harbor higher information content. Embeddings from the codon language model have recently demonstrated success in various protein downstream tasks. However, predictive models for residue-level tasks such as phosphorylation sites, arguably the most studied Post-Translational Modification (PTM), and PTM sites prediction in general, have predominantly relied on representations in amino acid space.</p><p><strong>Results: </strong>We introduce a novel approach for predicting phosphorylation sites by utilizing codon-level information through embeddings from the codon adaptation language model (CaLM), trained on protein-coding DNA sequences. Protein sequences are first reverse-translated into reliable coding sequences by mapping UniProt sequences to their corresponding NCBI reference sequences and extracting the exact coding sequences from their GenBank format using a dynamic programming-based global pairwise alignment. The resulting coding sequences are encoded using the CaLM encoder to generate codon-aware embeddings, which are subsequently integrated with amino acid-aware embeddings obtained from a protein language model, through an early fusion strategy. Next, a window-level representation of the site of interest, retaining the full sequence context, is constructed from the fused embeddings. A ConvBiGRU network extracts feature maps that capture spatiotemporal correlations between proximal residues within the window. This is followed by a prediction head based on a Kolmogorov-Arnold Network (KAN) employing the derivative of gaussian wavelet transform to generate the inference for the site. The overall model, dubbed CaLMPhosKAN, performs better than the existing approaches across multiple datasets.</p><p><strong>Availability and implementation: </strong>CaLMPhosKAN is publicly available at https://github.com/KCLabMTU/CaLMPhosKAN.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The mapping from codon to amino acid is surjective due to codon degeneracy, suggesting that codon space might harbor higher information content. Embeddings from the codon language model have recently demonstrated success in various protein downstream tasks. However, predictive models for residue-level tasks such as phosphorylation sites, arguably the most studied Post-Translational Modification (PTM), and PTM sites prediction in general, have predominantly relied on representations in amino acid space.

Results: We introduce a novel approach for predicting phosphorylation sites by utilizing codon-level information through embeddings from the codon adaptation language model (CaLM), trained on protein-coding DNA sequences. Protein sequences are first reverse-translated into reliable coding sequences by mapping UniProt sequences to their corresponding NCBI reference sequences and extracting the exact coding sequences from their GenBank format using a dynamic programming-based global pairwise alignment. The resulting coding sequences are encoded using the CaLM encoder to generate codon-aware embeddings, which are subsequently integrated with amino acid-aware embeddings obtained from a protein language model, through an early fusion strategy. Next, a window-level representation of the site of interest, retaining the full sequence context, is constructed from the fused embeddings. A ConvBiGRU network extracts feature maps that capture spatiotemporal correlations between proximal residues within the window. This is followed by a prediction head based on a Kolmogorov-Arnold Network (KAN) employing the derivative of gaussian wavelet transform to generate the inference for the site. The overall model, dubbed CaLMPhosKAN, performs better than the existing approaches across multiple datasets.

Availability and implementation: CaLMPhosKAN is publicly available at https://github.com/KCLabMTU/CaLMPhosKAN.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信