Polarization-independent regulation of the subcellular localization of Yes-associated protein 1 during preimplantation development.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shun Saito, Koji Nishiyama, Hanako Bai, Masashi Takahashi, Manabu Kawahara
{"title":"Polarization-independent regulation of the subcellular localization of Yes-associated protein 1 during preimplantation development.","authors":"Shun Saito, Koji Nishiyama, Hanako Bai, Masashi Takahashi, Manabu Kawahara","doi":"10.1016/j.jbc.2025.108429","DOIUrl":null,"url":null,"abstract":"<p><p>Cell polarization is a crucial developmental process that determines cell differentiation in mouse embryos. During this process, an extensively expressed transcriptional regulator, Yes-associated protein 1 (YAP1), is localized either to the cytoplasm or nucleus via HIPPO signaling. In mouse pre-morula embryos, YAP1 is present in the nuclei of all cells. Thereafter, YAP1 is distributed to the nuclei of outer cells or cytoplasm of inner cells, depending on the establishment of cell polarity and morula formation. However, the dynamics of YAP1 localization in other species, including ruminants, remain unclear. To gain an in-depth understanding of cell differentiation in mammalian embryos, we investigated YAP1 localization changes in bovine embryos. Unlike in mouse morulae, YAP1 displayed cytoplasmic localization in most cells, including the outer cells of bovine morulae, after the 32-cell stage. Next, we analyzed the relationship between cell polarity and nuclear localization of YAP1. Polarization of outer cells in the bovine morula began at the late 16-cell stage and was established by the late 32-cell stage, indicating that polarization preceded the nuclear localization of YAP1 in bovine embryos. To explore the regulation of YAP1 localization in bovine morula, we analyzed zona-free embryos and found that the presence of the zona pellucida significantly enhanced YAP1 cytoplasmic localization. Moreover, we observed ectopic expression of SOX2 in zona-free blastocysts, which indicated that cytoplasmic localization of YAP1 was associated with the suppression of pluripotency in the trophectoderm. These findings provide valuable insights into the molecular mechanisms underlying the first cell differentiation in mammalian embryos.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108429"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108429","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell polarization is a crucial developmental process that determines cell differentiation in mouse embryos. During this process, an extensively expressed transcriptional regulator, Yes-associated protein 1 (YAP1), is localized either to the cytoplasm or nucleus via HIPPO signaling. In mouse pre-morula embryos, YAP1 is present in the nuclei of all cells. Thereafter, YAP1 is distributed to the nuclei of outer cells or cytoplasm of inner cells, depending on the establishment of cell polarity and morula formation. However, the dynamics of YAP1 localization in other species, including ruminants, remain unclear. To gain an in-depth understanding of cell differentiation in mammalian embryos, we investigated YAP1 localization changes in bovine embryos. Unlike in mouse morulae, YAP1 displayed cytoplasmic localization in most cells, including the outer cells of bovine morulae, after the 32-cell stage. Next, we analyzed the relationship between cell polarity and nuclear localization of YAP1. Polarization of outer cells in the bovine morula began at the late 16-cell stage and was established by the late 32-cell stage, indicating that polarization preceded the nuclear localization of YAP1 in bovine embryos. To explore the regulation of YAP1 localization in bovine morula, we analyzed zona-free embryos and found that the presence of the zona pellucida significantly enhanced YAP1 cytoplasmic localization. Moreover, we observed ectopic expression of SOX2 in zona-free blastocysts, which indicated that cytoplasmic localization of YAP1 was associated with the suppression of pluripotency in the trophectoderm. These findings provide valuable insights into the molecular mechanisms underlying the first cell differentiation in mammalian embryos.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信