A comprehensive experimental comparison between federated and centralized learning.

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Swier Garst, Julian Dekker, Marcel Reinders
{"title":"A comprehensive experimental comparison between federated and centralized learning.","authors":"Swier Garst, Julian Dekker, Marcel Reinders","doi":"10.1093/database/baaf016","DOIUrl":null,"url":null,"abstract":"<p><p>Federated learning is an upcoming machine learning paradigm which allows data from multiple sources to be used for training of classifiers without the data leaving the source it originally resides. This can be highly valuable for use cases such as medical research, where gathering data at a central location can be quite complicated due to privacy and legal concerns of the data. In such cases, federated learning has the potential to vastly speed up the research cycle. Although federated and central learning have been compared from a theoretical perspective, an extensive experimental comparison of performances and learning behavior still lacks. We have performed a comprehensive experimental comparison between federated and centralized learning. We evaluated various classifiers on various datasets exploring influences of different sample distributions as well as different class distributions across the clients. The results show similar performances under a wide variety of settings between the federated and central learning strategies. Federated learning is able to deal with various imbalances in the data distributions. It is sensitive to batch effects between different datasets when they coincide with location, similar to central learning, but this setting might go unobserved more easily. Federated learning seems to be robust to various challenges such as skewed data distributions, high data dimensionality, multiclass problems, and complex models. Taken together, the insights from our comparison gives much promise for applying federated learning as an alternative to sharing data. Code for reproducing the results in this work can be found at: https://github.com/swiergarst/FLComparison.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2025 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baaf016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning is an upcoming machine learning paradigm which allows data from multiple sources to be used for training of classifiers without the data leaving the source it originally resides. This can be highly valuable for use cases such as medical research, where gathering data at a central location can be quite complicated due to privacy and legal concerns of the data. In such cases, federated learning has the potential to vastly speed up the research cycle. Although federated and central learning have been compared from a theoretical perspective, an extensive experimental comparison of performances and learning behavior still lacks. We have performed a comprehensive experimental comparison between federated and centralized learning. We evaluated various classifiers on various datasets exploring influences of different sample distributions as well as different class distributions across the clients. The results show similar performances under a wide variety of settings between the federated and central learning strategies. Federated learning is able to deal with various imbalances in the data distributions. It is sensitive to batch effects between different datasets when they coincide with location, similar to central learning, but this setting might go unobserved more easily. Federated learning seems to be robust to various challenges such as skewed data distributions, high data dimensionality, multiclass problems, and complex models. Taken together, the insights from our comparison gives much promise for applying federated learning as an alternative to sharing data. Code for reproducing the results in this work can be found at: https://github.com/swiergarst/FLComparison.

联盟学习是一种即将出现的机器学习范式,它允许将多个来源的数据用于训练分类器,而无需离开数据的原始来源。这对于医学研究等用例非常有价值,因为在医学研究中,由于数据的隐私和法律问题,在中央位置收集数据可能会相当复杂。在这种情况下,联合学习有可能大大加快研究周期。虽然联合学习和集中学习已经从理论角度进行了比较,但仍然缺乏对性能和学习行为的广泛实验比较。我们对联合学习和集中学习进行了全面的实验比较。我们对各种数据集上的分类器进行了评估,探讨了不同样本分布以及不同客户机上不同类别分布的影响。结果表明,联合学习和集中学习策略在各种设置下的性能相似。联合学习能够处理数据分布中的各种不平衡。当不同数据集的位置重合时,它对不同数据集之间的批次效应很敏感,这一点与集中学习类似,但这种情况可能更容易被忽略。联盟学习似乎对各种挑战都很稳健,例如偏斜数据分布、高数据维度、多类问题和复杂模型。综合来看,我们的比较结果为联合学习作为数据共享的替代方案提供了广阔的应用前景。转载本研究成果的代码请访问:https://github.com/swiergarst/FLComparison。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信