Panaxadiol Attenuates Brain Damage by Inhibiting Ferroptosis in a Rat Model of Cerebral Hemorrhage

IF 3.5 4区 医学 Q2 CHEMISTRY, MEDICINAL
Min Zhao, Yu Wang, Jing Li, Quan Wen, Yue Liu, Yanan Zhao
{"title":"Panaxadiol Attenuates Brain Damage by Inhibiting Ferroptosis in a Rat Model of Cerebral Hemorrhage","authors":"Min Zhao,&nbsp;Yu Wang,&nbsp;Jing Li,&nbsp;Quan Wen,&nbsp;Yue Liu,&nbsp;Yanan Zhao","doi":"10.1002/ddr.70079","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhage stroke, with a high disability, morbidity and mortality rate globally. Panaxadiol (PD), a triterpenoid sapogenin monomer, is isolated from the roots of ginseng, which has shown a variety of biological properties, such as anti-inflammation, anti-cancer, and neuroprotection. However, its effect and mechanism on ICH were still unknown. Thirty-six rats were randomly divided into six group (<i>n</i> = 6), namely, sham, ICH, ICH + 5 mg/kg PD, ICH + 10 mg/kg PD, ICH + 20 mg/kg PD, and ICH + 10 mg/kg PD + 50 mg/kg vismodegib. Rats were treated with type IV collagenase to induce an in vivo model of ICH, and then intraperitoneally injected with PD (5, 10 and 20 mg/kg) and 50 mg/kg vismodegib (an inhibitor of hedgehog signal). The effect and potential mechanism of PD on ICH were explored by behavioral test, brain water content measurement, Evans blue detection, hematoxylin-eosin (HE) staining, iron level examination, Prussian blue staining, western blot and immunohistochemistry, respectively. An increase in the mNSS (13.17 ± 1.17), and a decrease in the rotarod latency (40.67 ± 9.31), modified Garcia score (9.83 ± 1.47), forelimb use times (3.33 ± 0.82), left forepaw placements (29.90 ± 4.38) and left turns (17.34 ± 3.55) in ICH rats were reversed with the PD treatment (6.83 ± 0.75, 113.5 ± 11.95, 17.50 ± 1.87, 8.17 ± 0.98, 63.56 ± 9.84, and 42.13 ± 4.52 respectively). PD treatment reduced the brain water content (73.13 ± 3.16 vs. 86.82 ± 4.74), the level of Evans blue (2.14 ± 0.25 vs. 4.03 ± 0.20) and cerebral hemorrhage in ICH rats. Also, PD injection decreased the iron level (0.06 ± 0.005 vs. 0.17 ± 0.02) and the expression of ACSL4 (0.56 ± 0.07 vs. 1.23 ± 0.16), with the increased expression of GPX4 (1.14 ± 0.08 vs. 0.21 ± 0.03) in ICH rats. Mechanically, PD treatment restored the decreased expression of SHH (0.96 ± 0.13 vs. 0.20 ± 0.03), GLI1 (0.89 ± 0.13 vs. 0.06 ± 0.007) and PTCH (0.75 ± 0.05 vs. 0.10 ± 0.01) in ICH rats. Inhibition of SHH signaling by vismodegib reversed the ameliorative effect of PD on ICH rats. PD improved brain damage by suppressing ferroptosis via the activation of the SHH/GLI signaling pathway, which could lay a theoretical foundation for the treatment of ICH.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70079","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhage stroke, with a high disability, morbidity and mortality rate globally. Panaxadiol (PD), a triterpenoid sapogenin monomer, is isolated from the roots of ginseng, which has shown a variety of biological properties, such as anti-inflammation, anti-cancer, and neuroprotection. However, its effect and mechanism on ICH were still unknown. Thirty-six rats were randomly divided into six group (n = 6), namely, sham, ICH, ICH + 5 mg/kg PD, ICH + 10 mg/kg PD, ICH + 20 mg/kg PD, and ICH + 10 mg/kg PD + 50 mg/kg vismodegib. Rats were treated with type IV collagenase to induce an in vivo model of ICH, and then intraperitoneally injected with PD (5, 10 and 20 mg/kg) and 50 mg/kg vismodegib (an inhibitor of hedgehog signal). The effect and potential mechanism of PD on ICH were explored by behavioral test, brain water content measurement, Evans blue detection, hematoxylin-eosin (HE) staining, iron level examination, Prussian blue staining, western blot and immunohistochemistry, respectively. An increase in the mNSS (13.17 ± 1.17), and a decrease in the rotarod latency (40.67 ± 9.31), modified Garcia score (9.83 ± 1.47), forelimb use times (3.33 ± 0.82), left forepaw placements (29.90 ± 4.38) and left turns (17.34 ± 3.55) in ICH rats were reversed with the PD treatment (6.83 ± 0.75, 113.5 ± 11.95, 17.50 ± 1.87, 8.17 ± 0.98, 63.56 ± 9.84, and 42.13 ± 4.52 respectively). PD treatment reduced the brain water content (73.13 ± 3.16 vs. 86.82 ± 4.74), the level of Evans blue (2.14 ± 0.25 vs. 4.03 ± 0.20) and cerebral hemorrhage in ICH rats. Also, PD injection decreased the iron level (0.06 ± 0.005 vs. 0.17 ± 0.02) and the expression of ACSL4 (0.56 ± 0.07 vs. 1.23 ± 0.16), with the increased expression of GPX4 (1.14 ± 0.08 vs. 0.21 ± 0.03) in ICH rats. Mechanically, PD treatment restored the decreased expression of SHH (0.96 ± 0.13 vs. 0.20 ± 0.03), GLI1 (0.89 ± 0.13 vs. 0.06 ± 0.007) and PTCH (0.75 ± 0.05 vs. 0.10 ± 0.01) in ICH rats. Inhibition of SHH signaling by vismodegib reversed the ameliorative effect of PD on ICH rats. PD improved brain damage by suppressing ferroptosis via the activation of the SHH/GLI signaling pathway, which could lay a theoretical foundation for the treatment of ICH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
2.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信