Enhancing skin disease classification leveraging transformer-based deep learning architectures and explainable AI

IF 7 2区 医学 Q1 BIOLOGY
Jayanth Mohan , Arrun Sivasubramanian , Sowmya V. , Vinayakumar Ravi
{"title":"Enhancing skin disease classification leveraging transformer-based deep learning architectures and explainable AI","authors":"Jayanth Mohan ,&nbsp;Arrun Sivasubramanian ,&nbsp;Sowmya V. ,&nbsp;Vinayakumar Ravi","doi":"10.1016/j.compbiomed.2025.110007","DOIUrl":null,"url":null,"abstract":"<div><div>Skin diseases affect over a third of the global population, yet their impact is often underestimated. Automating the classification of these diseases is essential for supporting timely and accurate diagnoses. This study leverages Vision Transformers, Swin Transformers, and DinoV2, introducing DinoV2 for the first time in dermatology tasks. On a 31-class skin disease dataset, DinoV2 achieves state-of-the-art results with a test accuracy of 96.48 ± 0.0138% and an F1-Score of 97.27%, marking a nearly 10% improvement over existing benchmarks. The robustness of DinoV2 is further validated on the HAM10000 and Dermnet datasets, where it consistently surpasses prior models. Comparative analysis also includes ConvNeXt and other CNN architectures, underscoring the benefits of transformer models. Additionally, explainable AI techniques like GradCAM and SHAP provide global heatmaps and pixel-level correlation plots, offering detailed insights into disease localization. These complementary approaches enhance model transparency and support clinical correlations, assisting dermatologists in accurate diagnosis and treatment planning. This combination of high performance and clinical relevance highlights the potential of transformers, particularly DinoV2, in dermatological applications.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"190 ","pages":"Article 110007"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525003580","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin diseases affect over a third of the global population, yet their impact is often underestimated. Automating the classification of these diseases is essential for supporting timely and accurate diagnoses. This study leverages Vision Transformers, Swin Transformers, and DinoV2, introducing DinoV2 for the first time in dermatology tasks. On a 31-class skin disease dataset, DinoV2 achieves state-of-the-art results with a test accuracy of 96.48 ± 0.0138% and an F1-Score of 97.27%, marking a nearly 10% improvement over existing benchmarks. The robustness of DinoV2 is further validated on the HAM10000 and Dermnet datasets, where it consistently surpasses prior models. Comparative analysis also includes ConvNeXt and other CNN architectures, underscoring the benefits of transformer models. Additionally, explainable AI techniques like GradCAM and SHAP provide global heatmaps and pixel-level correlation plots, offering detailed insights into disease localization. These complementary approaches enhance model transparency and support clinical correlations, assisting dermatologists in accurate diagnosis and treatment planning. This combination of high performance and clinical relevance highlights the potential of transformers, particularly DinoV2, in dermatological applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信