Integrating QSP and ML to Facilitate Drug Development and Personalized Medicine.

Q1 Pharmacology, Toxicology and Pharmaceutics
Tongli Zhang
{"title":"Integrating QSP and ML to Facilitate Drug Development and Personalized Medicine.","authors":"Tongli Zhang","doi":"10.1007/164_2024_740","DOIUrl":null,"url":null,"abstract":"<p><p>In this chapter, the potential integration between quantitative systems pharmacology (QSP) and machine learning (ML) is explored. ML models are in their nature \"black boxes\", since they make predictions based on data without explicit system definitions, while on the other hand, QSP models are \"white boxes\" that describe mechanistic biological interactions and investigate the systems properties emerging from such interactions. Despite their differences, both approaches have unique strengths that can be leveraged to form a powerful integrated tool. ML's ability to handle large datasets and make predictions is complemented by QSP's detailed mechanistic insights into drug actions and biological systems. The chapter discusses basic ML techniques and their application in drug development, including supervised and unsupervised learning methods. It also illustrates how combining QSP with ML can facilitate the design of combination therapies against cancer resistance to single therapies. The synergy between these two methodologies shows promise to accelerate the drug development process, making it more efficient and tailored to individual patient needs.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2024_740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter, the potential integration between quantitative systems pharmacology (QSP) and machine learning (ML) is explored. ML models are in their nature "black boxes", since they make predictions based on data without explicit system definitions, while on the other hand, QSP models are "white boxes" that describe mechanistic biological interactions and investigate the systems properties emerging from such interactions. Despite their differences, both approaches have unique strengths that can be leveraged to form a powerful integrated tool. ML's ability to handle large datasets and make predictions is complemented by QSP's detailed mechanistic insights into drug actions and biological systems. The chapter discusses basic ML techniques and their application in drug development, including supervised and unsupervised learning methods. It also illustrates how combining QSP with ML can facilitate the design of combination therapies against cancer resistance to single therapies. The synergy between these two methodologies shows promise to accelerate the drug development process, making it more efficient and tailored to individual patient needs.

整合QSP和ML促进药物开发和个性化医疗。
在本章中,探讨了定量系统药理学(QSP)和机器学习(ML)之间的潜在整合。ML模型本质上是“黑盒子”,因为它们基于没有明确系统定义的数据进行预测,而另一方面,QSP模型是描述机械生物相互作用并研究从这种相互作用中产生的系统属性的“白盒子”。尽管存在差异,但这两种方法都具有独特的优势,可以用来形成强大的集成工具。ML处理大型数据集和做出预测的能力与QSP对药物作用和生物系统的详细机制见解相辅相成。本章讨论了基本的机器学习技术及其在药物开发中的应用,包括监督和非监督学习方法。它还说明了QSP与ML的结合如何有助于设计针对单一疗法的抗癌联合疗法。这两种方法之间的协同作用显示出加速药物开发过程的希望,使其更有效并适合个体患者的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of experimental pharmacology
Handbook of experimental pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.20
自引率
0.00%
发文量
54
期刊介绍: The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信