Chaos in a class of piecewise nonlinear systems with homoclinic cycles.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0246243
Kai Lu, Wenjing Xu
{"title":"Chaos in a class of piecewise nonlinear systems with homoclinic cycles.","authors":"Kai Lu, Wenjing Xu","doi":"10.1063/5.0246243","DOIUrl":null,"url":null,"abstract":"<p><p>It is still a challenge to accurately predict homoclinic cycles and chaos in smooth nonlinear systems, letting alone for non-smooth objects. This paper analytically investigates occurrence of homoclinic cycles in a class of three-dimensional piecewise nonlinear systems governed by a nonlinear subsystem and an affine one, which under some conditions can be transformed into a linear form. By a series of equivalent transformations, the solution of the considered systems can be obtained explicitly. Furthermore, via deriving analytic expression of Poincaré return maps, it rigorously proves that the considered system presents complicated chaotic dynamics. This approach offers a way to identify singular cycles and chaos in other piecewise systems exhibiting nonlinearities. Two examples are provided finally to numerically illustrate and verify effectiveness of our theoretical results established.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0246243","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

It is still a challenge to accurately predict homoclinic cycles and chaos in smooth nonlinear systems, letting alone for non-smooth objects. This paper analytically investigates occurrence of homoclinic cycles in a class of three-dimensional piecewise nonlinear systems governed by a nonlinear subsystem and an affine one, which under some conditions can be transformed into a linear form. By a series of equivalent transformations, the solution of the considered systems can be obtained explicitly. Furthermore, via deriving analytic expression of Poincaré return maps, it rigorously proves that the considered system presents complicated chaotic dynamics. This approach offers a way to identify singular cycles and chaos in other piecewise systems exhibiting nonlinearities. Two examples are provided finally to numerically illustrate and verify effectiveness of our theoretical results established.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信