Fuxing Song, Fang Guo, Bo Su, Na Niu, Lina Sun, Min Yan, Min Liu
{"title":"METTL3 promotes infantile pneumonia-induced lung injury by the m6A-TBL1XR1-ACSL1 axis","authors":"Fuxing Song, Fang Guo, Bo Su, Na Niu, Lina Sun, Min Yan, Min Liu","doi":"10.1016/j.cellimm.2025.104944","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Methyltransferase-like 3 (METTL3) is the catalytic subunit of methyltransferase complex that catalyzes mRNA methylation and has been identified to be involved in lipopolysaccharide (LPS)-induced lung cell injury. In this study, we investigated whether METTL3 is involved in the progression of infantile pneumonia (IP)-induced lung injury and its underlying mechanism.</div></div><div><h3>Methods</h3><div>WI-38 cells were exposed to LPS to induce in vitro proliferation, inflammation, apoptosis, and ferroptosis. The mRNA and protein levels of METTL3, TBL1XR1, IGF2BP1/2/3, and ACSL1 were measured by qRT-PCR and western blotting, respectively. The N6-methyladenosine (m6A) modification was analyzed using a methylated RNA immunoprecipitation assay. Protein interactions were determined using a Co-IP assay. LPS-induced pneumonia in mice was used for the in vivo analysis.</div></div><div><h3>Results</h3><div>METTL3 was highly expressed in IP and LPS-induced WI-38 cells. Knockdown of METTL3 reversed LPS-induced apoptosis, inflammation, and ferroptosis in vitro and in vivo and improved LPS-induced lung injury and collagen deposition in lung tissues of IP mice. Mechanistically, METTL3 induces TBL1XR1 m6A modifications and stabilizes its expression in an m6A-IGF2BP1-dependent manner. Functionally, the protective effects mediated by METTL3 silencing in LPS-treated WI-38 cells were reversed by TBL1XR1 overexpression. In addition, TBL1XR1 interacts with ACSL1, and METTL3 regulates ACSL1 expression via TBL1XR1. Further functional analysis showed that TBL1XR1 deficiency suppressed LPS-induced apoptosis, inflammation, and ferroptosis, which were abolished by ACSL1 up-regulation.</div></div><div><h3>Conclusion</h3><div>METTL3 stabilized TBL1XR1 expression through IGF2BP1-m6A methylation, promoting LPS-induced IP lung injury by upregulating ACSL1 expression.</div></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"411 ","pages":"Article 104944"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874925000292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Methyltransferase-like 3 (METTL3) is the catalytic subunit of methyltransferase complex that catalyzes mRNA methylation and has been identified to be involved in lipopolysaccharide (LPS)-induced lung cell injury. In this study, we investigated whether METTL3 is involved in the progression of infantile pneumonia (IP)-induced lung injury and its underlying mechanism.
Methods
WI-38 cells were exposed to LPS to induce in vitro proliferation, inflammation, apoptosis, and ferroptosis. The mRNA and protein levels of METTL3, TBL1XR1, IGF2BP1/2/3, and ACSL1 were measured by qRT-PCR and western blotting, respectively. The N6-methyladenosine (m6A) modification was analyzed using a methylated RNA immunoprecipitation assay. Protein interactions were determined using a Co-IP assay. LPS-induced pneumonia in mice was used for the in vivo analysis.
Results
METTL3 was highly expressed in IP and LPS-induced WI-38 cells. Knockdown of METTL3 reversed LPS-induced apoptosis, inflammation, and ferroptosis in vitro and in vivo and improved LPS-induced lung injury and collagen deposition in lung tissues of IP mice. Mechanistically, METTL3 induces TBL1XR1 m6A modifications and stabilizes its expression in an m6A-IGF2BP1-dependent manner. Functionally, the protective effects mediated by METTL3 silencing in LPS-treated WI-38 cells were reversed by TBL1XR1 overexpression. In addition, TBL1XR1 interacts with ACSL1, and METTL3 regulates ACSL1 expression via TBL1XR1. Further functional analysis showed that TBL1XR1 deficiency suppressed LPS-induced apoptosis, inflammation, and ferroptosis, which were abolished by ACSL1 up-regulation.
Conclusion
METTL3 stabilized TBL1XR1 expression through IGF2BP1-m6A methylation, promoting LPS-induced IP lung injury by upregulating ACSL1 expression.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.